2 Week of 02/13: natural numbers interface

In class we explored how a wide variety of functions on the natural numbers can be implemented
in terms of just four "primitives":

« zilch, or the representation for zero

« zilch?, which checks equality to zero

« succ, which computes the successor of a natural number

« pred, which computes the predecessor of a (nonzero) natural number

A cool benefit of restricting ourselves to these functions when writing arithmetic functions
on the natural numbers is that it gives us "implementation independence". There are many
different ways of representing natural numbers, but if we write our arithmetic functions using
only recursion and these four primitives, then the functions we write should be applicable
to any representation of N that implements this interface, i.e. provides an implementation of
these four primitives in such a way that they satisfy the same laws as the natural numbers. For
instance, we could use Scheme’s built-in naturals:

(define zilch @)

(define zilch? (lambda (n) (= n 0)))
(define succ (lambda (n) (+ n 1)))
(define pred (lambda (n) (- n 1)))

or we could use nested lists (as seen in lecture), with zero being represented as the empty list
" (), one being the list of the empty list ' (()), two being ' ((())), and so on, in which case
our interface would look like this:

(define zilch '())

(define zilch? null?)

(define succ (lambda (n) (cons n '())))
(define pred car)

or we could use lists of varying length containing repetitions of some placeholder value (as
seen in recitation), with zero again being the empty list ' (), one being the singleton list ' (a),
two being the list ' (a a), and so on, so that our interface would be the following:

(define zilch '())

(define zilch? null?)
(define succ (lambda (n) (cons 'a n)))



2 Week of 02/13: natural numbers interface

(define pred cdr)

or we could write a wacky (and terribly inefficient) implementation in which the natural number
n is represented as a binary tree with depth n with the data 'z at each of its nodes:

(define zilch 'z)

(define zilch? (lambda (n) (not (pair? n))))
(define succ (lambda (n) (cons n n)))
(define pred car)

The point is that we should write all of our arithmetic functions in such a way that they assume
nothing about the actual structure being used to represent the natural numbers. Everything
we write from this point onward should work no matter which of the above four interfaces we
include at the beginning of our code.

First of all, let’s write two functions that allow us to convert between our custom natural
numbers and Racket’s built-in integers. We will use these functions only for the purpose of
readability, not for doing actual computations. Implementing arithmetic functions by converting
our custom naturals to ordinary integers, performing a built-in arithmetic operation, and then
converting them back would kind of defeat the point of using the interface. Here are two
functions for converting between custom and built-in representations:

(define nat->number
(lambda (n)
(if (zilch? n) @ (+ 1 (nat->number (pred n))))
)
)

(define number->nat
(lambda (n)
(if (= n @) zilch (succ (number->nat (subl n))))
)
)

Now let’s start writing some arithmetic functions. The simplest one will be addition, which we
can write as follows:

(define add
(lambda (m n)
(if (zilch? n) m (add (succ m) (pred n)))
)
)

The strategy with this function is to decrement the second argument until it is zero, all the
while incrementing the first argument with each step. Once the second argument has reached
zero, we simply return the first argument. What we’re really taking advantage of here are the



2 Week of 02/13: natural numbers interface

following identities that are true for all natural numbers m,n € N:

m+0=m base case

m+n=(m+1)+(n—-1) recursive step

By tracking the sequence of recursive calls that will be spawned by a single call to the add
function, we can visualize how all the "mass" of the second argument gradually "accumulates”
in the first argument until it’s reduced to nothing. For instance, if we use the third interface
listed above (the one we saw in recitation), then the sequence of recursive calls involved in
computing 3 + 4 might look like this:

(add '(a a a) '(a a a a))

--> (add '(a a a a) '(a a a))

--> (add '(a a a a a) '(a a))

--> (add '(a a a a a a) '(a))

--> (add '(aaaaaaa 'Q)
--> '(aaaaaaa

Now let’s try writing a function to compute the product of two natural numbers. Here’s a "bad"
implementation that is not tail recursive:

(define mult-bad

(lambda (m n)
(if (zilch? m) zilch (add n (mult-bad (pred m) n)))

)
)
This definition is based on the following fact about natural numbers m,n € N:
0xXn=0 base case
mxn=n+(m—-1)-n recursive step

but, as we said, this implementation is not tail-recursive. When mult-bad makes a tail call to
itself, it doesn’t simply return the result of this tail call, but adds something to it. This means
that when evaluating this function in order to compute 3 x 2, the intermediate steps will look
something like this:

(mult-bad '(a a a) '(a a))

--> (add '(a a) (mult-bad '(a a) '(a a)))

--> (add '(a a) (add '(a a) (mult-bad '(a) '(a a))))

--> (add '(a a) (add '(a a) (add '(a a) (mult-bad '() '(a a)))))
-=> (add '(a a) (add '(a a) (add '(a a) 'OY)

--> (add '(a a) (add '(a a) '(a a)))

--> (add '(a a) '(a a a a))

--> '(aaaaaa)

Ouch. See how the repeated additions of ' (a a) build up quite a bit before they can be simplified
at the end? This could cause a lot of overhead for the interpreter, in the form of activation

10



2 Week of 02/13: natural numbers interface

registers accumulating on the call stack for function evaluations that don’t end with tail calls.
Here’s a better implementation of the multiplication function that makes use of a tail-recursive
helper function, defined using letrec:

(define mult
(lambda (m n)
(letrec
((mult-tail (lambda (m n acc) (if (zilch? m) acc (mult-tail (pred m) n (add n acc))))))
(mult-tail m n zilch)
)
)
)

The tail-recursive helper function mult-tail accumulates the successive additions in a third
accumulator argument, to avoid the overhead of unfinished function calls. Here’s what the
sequence of recursive calls to mult-tail might look like, if it is to compute |3 x 2]:

(mult-tail '(a a a) '(aa) 'O)

-=> (mult-tail '(a a) '(a a) (add '(a a) 'O))

--> (mult-tail '(a a) '(a a) '(a a))

--> (mult-tail '(a) '(a a) (add '(a a) '(a a)))
-=> (mult-tail '(a) '(a a) '(a a a a))

-=> (mult-tail '() '(a a) (add '(a a) '(a a a a)))
--> (mult-tail '() '(@a a) '(a a aaaa))

--> '(aaaaaa)

Notice how with this implementation, we never have more than one pending addition operation
at a time.

Let’s take a quick look at a couple more arithmetic functions. We can subtract two natural
numbers (tail-recursively) as follows:

(define subtract
(lambda (m n)
(cond
((zilch? n) m)
((zilch? m) zilch)
(else (subtract (pred m) (pred n)))
)
)
)

Note that if we try subtracting a natural number from another natural number that is smaller
than it, we would end up with a negative number - and that’s not something that is accounted
for by our interface. Because of this, we’re going to use the convention that (subtract m n)
should return zilch for the result of any subtraction that would produce a negative output,

11



2 Week of 02/13: natural numbers interface

so that, for instance, computing 3 - 5 would produce zero. This definition makes use of the
following facts about natural numbers m,n € N:

m-0=m base case 1
0 — nis negative if n # 0 base case 2
m-n=(m-1)—-(n-1) recursive step

Using this implementation, it is straightforward to write a function leq? that compares the
size of two natural numbers, determining if its first argument is less than or equal to its second
argument:

(define leq?
(lambda (m n) (zilch? (subtract m n)))
)

Using this as a helper function, we can write a "divisibility checker" called divides? that tests
whether its second argument is evenly divisible by its first argument, which was one of the two
lab exercises:

(define divides?
(lambda (d n)
(if (leq? d n) (divides? d (subtract n d)) (zilch? n))
)
)

This function is based on the following facts about natural numbers d, n € N with d # 0:

d>n = d|niffn=0 base case

dn & d|(n-4d) recursive step

In other words: the only time when it’s possible for a natural number to evenly divide a natural
number less than itself is when that second number is equal to zero, and subtracting a number
does not affect divisibility by that number. This means that if n is less than d, we know that it
can only be divisible by d if it’s zero, but if it’s not less than d, we can iteratively subtract d from
it until it has become smaller than d. We can also write a tail-recursive function to calculate the
remainder of a division problem, like this:

(define my-remainder
(lambda (n d)
(if (leq? d n) (my-remainder (subtract n d) d) n)
)
)

The second lab exercise for the Monday section was to write a function called count-powers-
of-two that counts the number of perfect powers of two (starting from 2° = 1) less than or
equal to a given input number. Here’s one possible implementation:

12



2 Week of 02/13: natural numbers interface

(define count-powers-of-two
(lambda (n)
(letrec
(
(helper (lambda (up acc) (if (leq? up n) (helper (add up up) (succ acc)) acc)))
)
(helper (succ zilch) zilch)
)
)
)

For this function, we’re using a tail-recursive helper function called helper that repeatedly
doubles its first argument through recursive calls to itself until this value surpasses n, tallying
up the number of doubles in its second accumulator argument. (For the Wednesday section, the
second exercise was to write a function called count-powers-of-three, which can be done by
making a slight change to the above code.) The sequence of recursive calls spawned by helper
when calculating the number of powers of two less than or equal to 9 might look like this:

(helper "(a) "))

-=> (helper '(a a) '(a))

-=> (helper '(a a a a) '(a a))

--> (helper '(a aaaaaaa) '(aaa)

--> (helper '(aaaaaaaaaaaaaaaa) '(aaaa))
--> '(a a a a)

If you’re looking for an extra challenge, you can try writing an efficient tail-recursive function
to test whether a given natural number is prime or composite, or to find the prime factorization
of a given natural number (in the form of a list of primes). Give it a try!

13



