1 Week of 01/30: set operations

In this recitation, we discussed how sets could be represented in Scheme as lists with no repeated
elements, and implemented a few functions for performing basic manipulations on sets. If we
encode mathematical sets as lists with no repeated elements, there may be many different ways
of encoding the same set, for instance {1, 2,3} could be represented as ' (1 2 3) or '(2 3 1)
or (3 1 2) and so on. Since the order of the elements of a list matters in Scheme, two different
representations of the same set may be reported as unequal by the equal? function. We’ll
remedy this later by writing our own function called set-equal? which checks whether or not
two lists are equal as sets.

We'll start by writing a function called set-insert which takes two arguments - an element x
and a list 1s (assumed to be a set, i.e. a list with no repeated elements) - and returns a copy of
the set with that element added to it. Since sets shouldn’t contain duplicate elements, if the
element x is already contained in the list 1s, then our function should return 1s unchanged. On
the other hand, if it’s not already in the list, it should return a copy of the list with that element
added (it doesn’t matter where we add to the list in this case). Here’s a possible implementation
of this function:

(define set-insert
(lambda (x 1s)
(cond
((null? 1s) (cons x '0)))
((equal? x (car 1s)) 1s)
(else (cons (car 1s) (set-insert x (cdr 1s))))
)
)
)

How does this function work? Given the arguments x and 1s, it splits into three cases:

« If 1s is empty, i.e. (null? 1s), then we should return the singleton list (cons x '())
with x as its only element.

« Otherwise, if 1s is not empty, we should compare x with the first element of 1s. If
(equal? x (car 1s)), then clearly x would be a duplicated element, so we should just
return the list 1s unchanged.

« Else, if 1s is nonempty and x is different from its first element, then we should set-insert
the element x into the tail of the list (cdr 1s). This is where the recursive call happens.



1 Week of 01/30: set operations

We can test out our function in the REPL:

> (set-insert 4 '(1 2 3))
(123 4)

> (set-insert 4 '(1 2 4))
' 2 4)

Notice that our function inserts new elements at the end of lists, but there’s no reason why
it need to work this way - (set-insert 4 '(1 2 3)) could have also returned the correct
answer ' (4 1 2 3), for instance. In fact, we can write a different implementation that behaves
differently while still being correct. Here’s an implementation of set-insert that uses the
helper function member?:

(define member?
(lambda (x 1s)
(if
(null? 1s)
#f
(or (equal? x (car 1ls)) (member? x (cdr 1s))))

(define set-insert2
(lambda (x 1ls)
(if (member? x 1ls) 1ls (cons x 1s))
)
)

This helper function member? decides whether or not the argument x is a member of the input
list 1s. Given this helper function, we can write a non-recursive version of our set insertion
function which either returns 1s or (cons x 1s) depending on whether or not x is already
in 1s, as determined by the member? function. Notice that in some cases, this second function
produces different (yet still correct) output from the original:

> (set-insert2 4 '(1 2 3))
"'(4123)

> (set-insert 4 '(1 2 4))
a2 4

Now let’s write a function called union-two that computes the union of two input sets 1s1
and 1s2. To accomplish this, we can use our previously defined set-insert function. Here’s a
possible implementation:

(define union-two
(lambda (set1 set2)
(if



1 Week of 01/30: set operations

(null? setl)
set2
(union-two (cdr setl) (set-insert (car setl) set2)))
)
)

Essentially, this function leverages the fact that unioning the empty set {} with any other set
leaves that set unchanged, and unioning a nonempty set set1 with another set set2 can be
accomplished by extracting its elements and inserting them into the second set one at a time.
We can think of this recursive definition as "popping" the elements out of set1 one at a time,
as if it were a stack, and inserting each of them into set2. Keep in mind, however, that no
mutation is happening (even though the way we talk about these sets might suggest that they’re
being "changed"). Here’s a test case of the union-two function

> (union-two '(1 2 345) '(246 8))
'"(2468135)

Of all the possible ways the elements of this set could be ordered, can you see (from the way we
defined union) why they come out in this specific order?

Next, let’s write a function contains? that decides whether or not its first argument set1 is
a subset of its second argument set2, i.e. whether or not set1 C set2, or whether all of the
elements of set1 are also elements of set2. Here’s one possible implementation:

(define contains?
(lambda (setl1 set2)
(if
(null? setl)
#t
(and
(element-of? (car setl) set2)
(contains? (cdr setl) set2)))
)
)

This definition is taking advantage of the fact that the empty set {}, which is represented by
the empty list ' (), is contained in every other set, meaning that we should always return #t
in the case of set1 being null?, whereas if set1 is nonempty, then it’s contained in set2 if
and only if its first element belongs to set2 and all the rest of its elements belong to set2. This
second case is where the recursive call comes in.

There’s actually a clever way of implementing this function with much less code (and no
recursive call!) using our union-two function:

(define contains2?
(lambda (setl1 set2)



1 Week of 01/30: set operations

(equal? set2 (union-two setl set2))
)
)

Recall that our union-two function pops the elements out of set1 one at a time and inserts
them into set?2, if they aren’t already there. But if set1 C set2, then each of the elements that
are inserted this way already exist in set2, meaning that the result of union-two setl1 set2
will be identical to set2 and our function will give #t. On the other hand, if set1 is not
a subset of set2, then it will contain some novel element that isn’t in set2, meaning that
(union-two set1 set2) will be different from set2 and our function will give #f as expected.
Theoretically, this function is taking advantage of the fact that A ¢ Bif and onlyif B=AU B
for sets A and B. Be careful, though: a subtle change to this function will cause it to malfunction.
Consider the following:

(define bad-contains?
(lambda (setl1 set2)
(equal? set2 (union-two set2 setl))
)
)

Try using this function to test whether the set represented by (2 3 4) is contained in the set
represented by (1 2 3 4 5). Why does it give a wrong result?

Now we’ll just write one more function - the one called set-equal? that we promised at the
beginning, which checks whether two lists are equal as sets. That is, given two lists with
no duplicated elements, this function will check whether the elements of the two lists are
rearrangements of each other. With a little bit of set theory, this can be accomplished without a
single recursive call: a commonly used fact is that two sets A and B are equal if and only if they
contain each other, i.e. if A C B and B C A. Hence, we can implement our function as follows:
(define set-equal?
(lambda (setl1 set2)
(and (contains? setl set2) (contains? set2 setl))

)

If you’re looking for a little bit of extra practice, try your hand at writing a couple of these
set-related functions:

- intersection which calculates the intersection A N B of two sets A and B
« union-all which, given a list of sets, calculates the union of all of them
« intersection-all which, given a list of sets, calculates the intersection of all of them

« powerset which, given a set A, calculates a set consisting of all of its subsets - for instance,
(powerset '(1 2 3)) mightgive '(() (1) (2) (3) (1 2) (1 3) (23) (12 3))



1 Week of 01/30: set operations

« cartesian-product which, given two sets A and B, calculates their cartesian product
A X B (the elements of this new set can be represented as pairs in Scheme)

« product? which, given a set of pairs, determines whether that set is equal to the cartesian
product of some pair of sets (for instance ' ((1 . 2) (3 . 4)) is not the product of two
sets,but '((1 . 2) (1 . 4) (3 . 2) (3 . 4)) is the product of the sets ' (1 3) and
(2 4)



