
1 Choosing axis scaling

I’ve noticed that on the homeworks, some people are having trouble choosing appropriate
scaling for the axes on their plots. Here are some examples that were chosen to help you decide
when to use linear, loglog, or semilog scaling, avoid common mistakes and misconceptions, and
design readable plots.

1.1 Polynomial approximations of 4G near zero

Consider the following three functions:

%1(G) = 1 + G

%2(G) = 1 + G +
G2

2

%3(G) = 1 + G + G2 �
G3

2
Here’s what we see if we plot them together with the function 5 (G) = 4G :

Notice that all three of these polynomials seem to "hug" the graph of ~ = 4G very closely for
small values of G close to G = 0, though the graphs diverge as G moves away from zero. We
might ask the question: which of these functions approximates ~ = 4G most closely for very

3

1 Choosing axis scaling

small values of G? To begin to answer this question, we might start by plotting the di�erence
between each polynomial and the value of the exponential function at a sequence of G values,
and trying to observe which one has an error value that approaches zero most quickly. We can
plot the errors using the following code:

P1 = @(x) 1 + x;
P2 = @(x) 1 + x + x.^2/2;
P3 = @(x) 1 + x + x.^2 - x.^3/2;
x = linspace(0, 1, 100);
figure(1);
plot(x, abs(exp(x)-P1(x))); hold on
plot(x, abs(exp(x)-P2(x)));
plot(x, abs(exp(x)-P3(x)));
xlabel(�x�);
ylabel(�error�);
legend(�P_1 error�, �P_2 error�, �P_3 error�);

This gives us the following plot of the errors:

From this graph, it seems more clear that %2 is a better approximation than %1 and %3, but it’s
kind of hard to see how all three errors behave really close to G = 0. If we want to see the
behavior of the error very close to zero, rather than plotting at a grid of evenly spaced points
linspace(0,1,100), we might instead plot at a sequence of points whose magnitude decreases
exponentially. For instance, we could plot the error at G = 100, 10�1, 10�2, · · · using the following
code:

P1 = @(x) 1 + x;
P2 = @(x) 1 + x + x.^2/2;
P3 = @(x) 1 + x + x.^2 - x.^3/2;
x = 10.^-(0:10);

4

1 Choosing axis scaling

figure(1);
plot(x, abs(exp(x)-P1(x))); hold on
plot(x, abs(exp(x)-P2(x)));
plot(x, abs(exp(x)-P3(x)));
xlabel(�x�);
ylabel(�error�);
legend(�P_1 error�, �P_2 error�, �P_3 error�);

This gives the following plot:

This plot looks kind of funny. These curves almost look like straight lines, so we might be
tempted to say that the error shrinks linearly as G approaches zero. But this would be mistaken!
This graph is very misleading, because most of the data points have very small G-values, meaning
that they are all clustered near zero. When MATLAB plots a curve through a collection of
points, it draws the line segment joining each pair of consecutive points - so the part of this
graph between G = 0.1 and G = 1 that looks like a straight line doesn’t re�ect how the error
behaves on that interval, it just behaves that way because MATLAB is plotting a line segments
between two points with G = 0.1 and G = 1 for lack of any data in between those two points!
This phenomenon becomes more obvious if we ask MATLAB to actually display the data points
on the graph, by modifying the plot lines as follows:

plot(x, abs(exp(x)-P1(x)), �-o�); hold on
plot(x, abs(exp(x)-P2(x)), �-o�);
plot(x, abs(exp(x)-P3(x)), �-o�);

This gives the following graph:

5

1 Choosing axis scaling

Notice how there are no data points at all between G = 0.1 and G = 1, and several very close
to G = 0? It doesn’t make for a very good graph if we let just of the data points determine 90
percent of the graph, while all the rest are squished into a tiny little interval near zero. This is
why it would be a good idea to use logarithmic scaling on the G axis, since our chosen x-values
are decreasing exponentially. We can use the following code to do a semilogx plot which uses a
logarithmic scale for the x-axis only:

P1 = @(x) 1 + x;
P2 = @(x) 1 + x + x.^2/2;
P3 = @(x) 1 + x + x.^2 - x.^3/2;
x = 10.^-(0:10);
figure(1);
semilogx(x, abs(exp(x)-P1(x)), �o-�); hold on
semilogx(x, abs(exp(x)-P2(x)), �o-�);
semilogx(x, abs(exp(x)-P3(x)), �o-�);
xlabel(�log x�);
ylabel(�error�);
legend(�P_1 error�, �P_2 error�, �P_3 error�);

This gives the following graph:

6

1 Choosing axis scaling

Now we can see that the data points are pretty evenly spaced along the x-axis, but it’s very
di�cult to see the di�erences between the error values as G gets smaller, because they’re all
very close to zero. In fact, it seems like they might be getting exponentially smaller as G shrinks
exponentially. This means that rather than using a semilogx plot, we should probably use a
loglog plot, so that both the x-values and the error values are plotted on a logarithmic scale. We
can use this code:

P1 = @(x) 1 + x;
P2 = @(x) 1 + x + x.^2/2;
P3 = @(x) 1 + x + x.^2 - x.^3/2;
x = 10.^-(0:10);
figure(1);
loglog(x, abs(exp(x)-P1(x)), �o-�); hold on
loglog(x, abs(exp(x)-P2(x)), �o-�);
loglog(x, abs(exp(x)-P3(x)), �o-�);
xlabel(�log x�);
ylabel(�log error�);
legend(�P_1 error�, �P_2 error�, �P_3 error�, location=�northwest�);

This gives us the following plot:

7

1 Choosing axis scaling

This plot is much more readable! It shows us that %1 and %3 have about the same error at G ! 0,
whereas the error in %2 decreases signi�cantly faster. In fact, the error for %2 grows so small for
small values of G that it is rounded to zero during the calculation, which is why several points
are absent from the graph of %2 (because the log of zero is unde�ned).

In fact, using a loglog plot allows us to quantify just how much faster the error for %2 approaches
zero compared to the other two polynomials. By inspecting the graph, we can see that log(|%2 �
4G |) is approximately a linear function of log(G) with a slope of 2, whereas log(|%1 � 4G |) and
log(|%3 � 4G |) are approximately linear with a slope of 1. In other words,

log(|%1(G) � 4G |) ⇡ G + 0

log(|%2(G) � 4G |) ⇡ 2G + 1

log(|%3(G) � 4G |) ⇡ 2G + 2

for some constants 0,1, 2 . Exponentiating both sides of these equations yields the following:

|%1(G) � 4G | ⇡ �G

|%2(G) � 4G | ⇡ ⌫G2

|%3(G) � 4G | ⇡ ⇠G

where � = 100 , ⌫ = 101 , and ⇠ = 102 . Using big-O notation, we can express this as follows:

|%1(G) � 4G | = O(G)

|%2(G) � 4G | = O(G2)

|%3(G) � 4G | = O(G)

In other words, the error for the second polynomial shrinks quadratically as G approaches zero,
but the error for the other two polynomials only shrinks linearly.

We’ve seen above how a loglog plot can be useful. In the following two shorter examples, we’ll
see where semilogy and semilogx plots can come in handy.

8

1 Choosing axis scaling

1.2 Partial sums of a geometric series

You might have seen the following in�nite summation identity before:

1’
:=1

1
2:

=
1
2
+
1
4
+
1
8
+ · · · = 1

What this equation actually means is that as we successively add together more and more of
the �rst = terms of the series, the resulting value will get arbitrarily close to 1. For instance,

1
2
+
1
4
= 0.75

1
2
+
1
4
+
1
8
= 0.875

1
2
+
1
4
+
1
8
+

1
16

= 0.9375

1
2
+
1
4
+
1
8
+

1
16

+
1
32

= 0.9688

If we add up the �rst 20 terms, we will get the following:

1
2
+
1
4
+ · · · +

1
220

⇡ 0.999999046325684

We might be curious about exactly how fast this sequence of partial sums approaches the value
1. We can do this by plotting the di�erence between the sum of the �rst = terms and the exact
value of 1 as = increases, using the following MATLAB code:

n = 1:20;
terms = 2.^-n;
sums = cumsum(terms);
plot(n, abs(1-sums))
xlabel(�Number of terms�)
ylabel(�Error�)

This gives the following plot:

9

1 Choosing axis scaling

We can see that the error seems to be decreasing exponentially. In fact, if you look closely, you
might notice that it is being halved each time we add a new term. But for larger values of =,
the error is so small that it’s hard to see if the error is changing at all from one partial sum to
the next, making this plot a poor representation of the data. Since the error data seems to be
decreasing exponentially as the x-values increase linearly, we should use a semilogy plot to
represent the data:

n = 1:20;
terms = 2.^-n;
sums = cumsum(terms);
semilogy(n, abs(1-sums))
xlabel(�Number of terms�)
ylabel(�Log error�)

which gives the following plot:

10

1 Choosing axis scaling

Notice that this graph looks like a straight line, which con�rms that the error values are indeed
decreasing exponentially. As a matter of fact, if you calculate the slope of this line, you might
�nd that its slope is close to �0.301 · · · = � log10(2). This means that

log(|(= � 1|) ⇡ log(2) · = + 0

for some constant 0. If we exponentiate both sides of this equation, we �nd that

|(= � 1| ⇡ � · 10� log(2) ·= =
�

2=

where (= is the sum of the �rst = terms of the series and � = 100 . As a matter of fact, it can
be proven mathematically that the error is always exactly equal to 1/2= , which con�rms this
experimental observation (the value of � would then be equal to 1). You can try to prove this as
an exercise, if you want.

1.3 Growth of the harmonic numbers

Let’s look at a di�erent kind of sum. Consider the harmonic numbers �= , which are de�ned as
follows:

�= =
1
1
+
1
2
+
1
3
+ · · · +

1
=

Let’s think about how these sums increase as a function of =. Unlike the sums of the reciprocals
of the powers of 2, considered in the previous example, the values of the sums �= do not
approach any �nite value, but rather grow arbitrarily large. This might be surprising, since the
value that we are adding to the sum gets smaller and smaller each time! But we can observe
this phenomenon using a numerical experiment in MATLAB. (Proving this fact mathematically
is another thing entirely! If you’re curious, maybe you can try it yourself.)

The following code can be used to plot the values of �= for = = 1, 2, · · · , 10000:

11

1 Choosing axis scaling

n = 1:10000;
terms = 1./n;
sums = cumsum(terms);
plot(n, sums);

which gives us this plot:

Sure enough, it looks like the harmonic numbers continue to increase signi�cantly all the way
up to = = 10, 000, although the rate at which they grow slows down quite a bit after the �rst
1000 or so terms. However, this plot isn’t entirely convincing. After all, maybe this sum does in
fact converge to some value larger than 9, but just takes an extraordinarily long time to do so,
with the error shrinking very slowly. If you inspect the value of �= closely, you might notice
that doubling the number of terms increases the harmonic numbers by about a constant amount.
If this were always true, then of course the values of �= would grow to in�nity - to �nd an
arbitrarily large value of �= , we would just have to double the number of terms enough times.
To observe this phenomenon graphically, we can make a semilogx plot by changing plot to
semilogx in the above code:

12

1 Choosing axis scaling

Check it out! This graph looks like a straight line, indicating that �= is approximately ⇠ ·

log(=) +⇡ for some constants⇠ and ⇡ , for large values of =. This is a bit more convincing, since
this curve is a very straight line when plotted using loglog, and we know that the logarithm
function grows unboundedly large (albeit very slowly).

1.4 Summary

Here’s a list of key takeaways:

• Try to pick your axis scaling so that all of the data points aren’t clumped together in one
place, so that it’s easy to see the trend.

• If data values grow very close to zero but are plotted linearly, it can be di�cult to see
exactly how quickly they approach zero, since it’s hard to see the di�erence between, say,
0.01 and 0.001 on a linear scale.

• If two data points are very far apart, MATLAB will plot a long line segment between
them, which might misleadingly suggest that the trend is linear when it really isn’t.

• In general, loglog is useful when the dependent variable is approximately a polyno-
mial/power function of the independent variable, semilogy is useful when the depen-
dent variable is approximately an exponential function of the independent variable, and
semilogx is useful when the dependent variable is approximately a logarithmic function
of the independent variable.

• You might have to experiment with a couple di�erent plots before �nally choosing the
most appropriate scaling.

13

	Choosing axis scaling
	Polynomial approximations of ex near zero
	Partial sums of a geometric series
	Growth of the harmonic numbers
	Summary

