
Extruder-Turtle: A Library for 3D Printing Delicate, Textured,
and Flexible Objects

Franklin Pezzuti Dyer
fpezzutidyer@unm.edu

Department of Computer Science
University of New Mexico

Albuquerque, New Mexico, USA

Leah Buechley
buechley@unm.edu

Department of Computer Science
University of New Mexico

Albuquerque, New Mexico, USA

Figure 1: Prints created using the ExtruderTurtle library.

ABSTRACT
This paper introduces ExtruderTurtle, an open-source Turtle Ge-
ometry library for 3D printing, which generates G-CODE based
on the path traveled by a LOGO-inspired Turtle. We describe the
functionality of our library and demonstrate how it provides an
intuitive and accessible way to create objects with a range of in-
teresting properties, using Fused Deposition Modeling (FDM) 3D
printers. We also present a collection of examples–including repli-
cations of previous research as well as original investigations–to
demonstrate the power and flexibility of our library and this gen-
eral approach. Our examples include 3D printed textiles, textured
surfaces, and delicate string-art sculptures, along with traditional
Turtle Geometry forms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
TEI ’22, February 13–16, 2022, Daejeon, Republic of Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9147-4/22/02. . . $15.00
https://doi.org/10.1145/3490149.3501312

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools.

KEYWORDS
3D printing, G-CODE, Turtle Geometry, LOGO, digital fabrication,
computational design, computational geometry
ACM Reference Format:
Franklin Pezzuti Dyer and Leah Buechley. 2022. Extruder-Turtle: A Library
for 3D Printing Delicate, Textured, and Flexible Objects. In Sixteenth Inter-
national Conference on Tangible, Embedded, and Embodied Interaction (TEI
’22), February 13–16, 2022, Daejeon, Republic of Korea. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3490149.3501312

1 INTRODUCTION
When designing objects for FDM 3D printing, the traditional work-
flow proceeds as follows: CAD software, like Rhino or Blender, is
used to design a shape which is then exported to a file format, like
STL, that encodes its geometry. Once generated, an stl file is passed
to slicer software, which slices the geometry into layers, and out-
puts a sequence of G-CODE commands, which specifies the path
to be traveled by the 3D printer’s extruder. Then, each horizontal
cross-section of the object is printed one layer at a time.

Computational design and geometric programming tools like
OpenSCAD and Grasshopper can also generate 3D models (and

https://doi.org/10.1145/3490149.3501312
https://doi.org/10.1145/3490149.3501312

TEI ’22, February 13–16, 2022, Daejeon, Republic of Korea Franklin Dyer and Leah Buechley

corresponding .stl files), but they too output geometries rather than
machine paths. It should be stressed that neither CAD software nor
geometric programming tools were designed to output G-CODE.
G-CODE is almost always generated by separate slicing software.

The pairing of 3D modelling (or computational design) and slicer
software is powerful but restrictive. There is a range of interesting
shapes, surfaces, and textures that cannot be generated by slicers.
This shortcoming has been examined by many researchers, who
have developed creative approaches to generate and characterize
individual designs that cannot be produced through the traditional
process (cf. [10, 29, 30]).

This paper introduces an open-source library that we intend to
function as a general-purpose tool that enables the exploration of
custom G-CODE generation. Instead of developing and characteriz-
ing a single design, like previous researchers have done, we present
our tool and then explore how it can be used to produce a wide
range of designs. Our explorations include the 3D printing of hairs,
textiles, string-art, and non-planar surfaces. The contribution of
this work is: 1) a robust and user friendly open-source library for
GCODE generation, in conjunction with 2) a large collection of
examples that demonstrate the utility and flexibility of the library.
We hope the paper also serves as 3) an illustration of the unique and
compelling possibilities afforded by custom G-CODE generation.
Our intention is to "lower the floor" of technical expertise required
to experiment with custom G-CODE generation, and "widen the
walls" of perceived possibilities in this space [20].

2 PREVIOUS WORK
2.1 Turtle Geometry and 3D Printing
Though closely associated with LOGO and most well known as
a programming paradigm for children, Turtle Geometry is best
understood as a powerful general-purpose alternative to Euclidean
Geometry. It has many advantages as a framework for exploring
computational geometry. These are covered extensively and beauti-
fully in Turtle Geometry: the Computer as a Medium for Exploring
Mathematics [1].

Turtle Geometry describes geometrical shapes not in terms of
the static points and curves of Euclidean Geometry, but as paths
that are dynamically traced out by a "turtle", holding a "pen", that
moves across the plane. The turtle is directed via forward, backward,
left, and right as well as pen-up and pen-down commands [1, 16].
Shapes are created as the turtle drags the pen around in different
patterns. Although it was originally used only for 2D figures, the
turtle paradigm has since been extended to describe curves in 3D
space by allowing rotation about multiple coordinate axes [32]. The
turtle paradigm enables people to describe and generate complex
shapes in an intuitive way, without using trigonometry. Turtle
Geometry and LOGO have been widely used in mathematics and
computer science education [1, 16, 28].

The resemblance between a turtle that traces geometrical shapes
in its path and an extruder that leaves strands of plastic filament
trailing behind it suggests an analogy between Turtle Geometry
and 3D printing. There are several instances of past research com-
bining Turtle Geometry and digital fabrication. "Turtle Stitch" is an
application that uses 2D Turtle Geometry to generate embroidery
patterns [34]. "Beetle Blocks" is a programming environment that

uses 3D Turtle Geometry to design 3D objects that can be printed
[21–23]. This youth-oriented software generates large scale geom-
etry and must be used in conjunction with slicing software. In an
earlier precedent, Eisenberg explored mathematical knot structures
by tracing out their paths with a 3D turtle and 3D printing the
results [5].

In a project that most closely resembles the work we describe
here, Kanada et al. wrote a basic library that generates G-CODE
with turtle movements [7]. Our library expands significantly on
this earlier work by introducing a set of new features including:
turtle pen up and pen down commands, which enable the printing
of structures that require non-continuous extrusion; commands
that enable the blending of Euclidean geometry and Turtle Geom-
etry; commands that control the rate of filament extrusion; and
commands that allow the printer to pause in the middle of a print
and (optionally) respond to user interaction. These new features
are critical to producing the range of examples presented in this pa-
per. For example, printing hairs requires the pen up and pen down
commands, textured prints require filament extrusion control, and
textile structures require the pause command.

Our library can also be seamlessly integrated into Grasshop-
per/Rhino projects, and has features, including the drawTurtle()
method, that allow users to easily visualize turtle movement and
location in Rhino. This allows users to visualize their 3D prints and
turtle paths in real time as they code.

We also demonstrate a much larger and more diverse set of
examples than Kanada et al. Our aim is to do a more thorough
job of illuminating the range of possibilities. Importantly, most of
our examples rely on features–especially pen up, pen down, and
extrusion control–that are unique to our library.

2.2 Custom-Generated G-CODE
Custom G-CODE can be created in many different ways. A program
written in any general purpose language can output a .gcode file, but
it is common for G-CODE generators to be coded in programming
environments designed for 3D modeling, like Grasshopper. (Note
that the popular geometric programming language OpenSCAD
does not have the language features required to generate G-CODE.)
There are plugins (c.f. Droid [31]) that enable a programmer to
generate G-CODE directly in Grasshopper, but these plugins mostly
replicate the behavior of slicers. The fine-grained control of print
head behavior that is required to produce the examples we discuss
in this section and the rest of the paper entails the writing of custom
programs.

When G-CODE is generated directly for an FDM printer, it is
possible to print structures that are as thin as a single strand of
extruded filament. Several researchers have leveraged this ability
to generate hair-like 3D printed structures [3, 10]. Patches of 3D
printed hair can be used to decorate 3D printed figures and to create
a variety of brushes. They can be used to increase the mechanical
adhesion between two surfaces (creating Velcro-like structures),
to control objects’ movements across a surface using a "stick-slip"
mechanism, can serve as tactile and acoustic sensors when coupled
with electronic components [15], and can enhance virtual reality
experiences with haptic feedback [3].

Extruder-Turtle: A Library for 3D Printing Delicate, Textured, and Flexible Objects TEI ’22, February 13–16, 2022, Daejeon, Republic of Korea

Wavy, curly, and bumpy surface textures can be built by changing
the extrusion process with customG-CODE. Takahashi &Miyashita
developed a system where a shape is printed layer by layer but the
print head is lifted slightly above the previous layer, instead of ex-
truding directly onto it. The filament curls as it is extruded onto the
previous layer, creating an object with a ruffled surface. They con-
ducted a detailed exploration of the parameter space, cataloguing
which combinations of height and extrusion rate result in which
textural patterns [29]. The artist LIA also created a series of strik-
ing and beautiful 3D printed sculptures that explored a range of
G-CODE generation techniques, some of which seem to be the
inspiration for Takahashi & Miyashita’s work [12].

Surface texture is useful as a medium for storing information,
as an alternative to or extension of visual media. In another pa-
per, Takahashi & Miyashita discuss a framework where different
patterns can be "embossed" onto surfaces using 3D printing [30].
3D printing has been widely used to create braille or braille-like
textures on the surface of objects (cf. [2]). In similar fashion, Shin
et al. explored how colors can be mapped to 3D printed textures to
enable people to appreciate visual artwork by experiencing colors
through texture [27].

Creatively printed materials can also have a variety of mechani-
cal and tensile properties. The use of metamaterials, or small-scale
structures composed of the same material, can be used to control
the elasticity of a 3D print, or even impart varying levels of elasticity
to different regions inside the print [25].

Another challenge of nontraditional 3D printing is to produce
textile-like structures, which could potentially be applied to the
fabrication of clothing or other wearable objects. Techniques for
mimicking textiles include using the extruder head to "weave" fila-
ment between printed pillars and even combining extruded plastic
with actual textiles and fabrics to enhance tensile strength [24, 29].

In addition to interesting and useful tactile and tensile properties,
manipulating 3D printed objects’ local properties can give rise to
interesting optical effects. For instance, controlling the direction
in which filament is extruded can change how light is reflected off
of a printed surface [8], and techniques such as helical 3D printing
can give rise to complex Moiré patterns [9].

Custom software can also be used to print wireframe mesh struc-
tures consisting of segments that are only one stroke of filament
thick. Not only do these skeletal constructions have a unique ap-
pearance, but they can be used to rapidly "preview" prints without
wasting an unnecessary amount of time and filament [14]. In short,
custom G-CODE generation opens up a wide range of expressive
and technical possibilities.

It is worth emphasizing that all of the research described in this
section involved writing an application-specific G-CODE generator.
Each generator was capable of generating only one specific type
of shape. ExtruderTurtle takes a different approach; it is a general-
purpose library that can be used to generate G-CODE for a wide
range of shapes and applications, including many of those described
above. Our intention is to make explorations like these much easier
to code and 3D print.

3 THE EXTRUDER-TURTLE LIBRARY
Our open-source library consists of a single class, ExtruderTurtle,
which has methods that combine 3D Turtle Geometry with the
functionality of a 3D printer. The source code for our library, along
with extended documentation of all of the examples described in
this paper, can be found on the Extuder Turtle website [4]. As with
traditional Turtle Geometry, we keep track of the turtle’s heading
and position.We have added state variables to the turtle that capture
information relevant to 3D printing. For instance, our turtle has
variables that keep track of the temperature and speed of the print
head.

Many turtle actions, including all movements through space,
correspond to G-CODE commands [19]. As methods are called,
these commands arewritten to a G-CODEfilewhich, when executed
by a 3D printer, instructs the extruder’s nozzle to trace out the path
traveled by the turtle. In the spirit of Turtle Geometry, G-CODE
is written in relative mode, meaning that all XYZ-coordinates are
measured relative to the extruder’s current position, rather than a
fixed origin.

ExtruderTurtle can be used as a stand alone python tool or can
be incorporated into Grasshopper/Rhino projects. Grasshopper
and Rhino can be used to visualize the turtle’s path, including the
approximate thickness of the filament that will be extruded and the
current position and heading of the turtle. See Figure 2.

To begin an ExtruderTurtle program, themethod ExtruderTurtle()
must be called to instantiate a turtle object. (In the rest of the
paper, we will refer to a turtle object with the name "t".) The
t.setup(x,y,z,filename) method must be called to specify the tur-
tle’s starting position and the file to which G-CODE will be written.
The rest of the library’s methods can be sorted into two groups: 1)
those that control the geometry of the path traced by the turtle and
2) those that control the way in which filament is deposited.

3.1 Methods Controlling Path Geometry
In 3D space, the turtle’s heading is determined by three unit vectors
- the "forward" vector, which can be visualized as pointing out the
front of the turtle’s head; the "left" vector, which points out of the
turtle’s left side; and the "up" vector, which is outwardly normal
to the turtle’s shell. This allows for the following commands for
controlling rotation:

We also provide a t.draw_Turtle()method that is useful for visu-
alizing the position and heading of the turtle in Grasshopper/Rhino.
This command returns a triangular Rhino surface that depicts the
plane the turtle is currently in. The sharpest point of the triangle
indicates the direction of the turtle’s forward vector (see Figure 2,
c).

TEI ’22, February 13–16, 2022, Daejeon, Republic of Korea Franklin Dyer and Leah Buechley

Figure 2: A sample ExtruderTurtle program: a) the python code, b) the corresponding G-CODE, c) the visualization of the path
in Rhino. The shaded triangle indicates the turtle’s heading and position at the end of the program, when t.draw_Turtle() is
called. Note that this path would not result in a successful 3D print.

The following commands control the turtle’s movement:

Our library also includes methods that allow a programmer to ac-
cess and control the turtle’s state more directly, including t.getX(),
t.set_position(), t.get_yaw(), t.set_heading(), etc. These func-
tions allow a programmer to combine Turtle and Euclidean Geom-
etry, which can be useful in many situations. Figure 2 shows an
example series of turtle commands accompanied by the G-CODE
they generate and a visualization of the path in Rhino.

3.2 Methods controlling Filament Deposition
The simplest commands controlling filament deposition are t.penup()
and t.pendown(), borrowed from traditional 2D turtle commands.
The former "lifts the pen", meaning that no filament is extruded
until the pen is "put down" again using the latter command. To
generate cleaner printed transitions, the t.penup() command adds a
G-CODE command (E-3) to the file specifying a negative extrusion
of 3mm and the t.pendown() adds a command with the correspond-
ing positive extrusion (E3).

When the pen is down, filament is extruded at a constant rate, so
that the same amount of filament is extruded per unit distance as
the extruder moves. For most FDM printers, using a nozzle with a
diameter of .4mm, filament with a diameter of 1.75mm, and a layer
height of .2mm, the standard value is .03. In practice, we have found
best results using an extrude rate between .01 and .10. The default
extrude rate for our library is 0.05, but this can be changed using
the command t.set_density(extrude_rate). Note that the unit of
extrusion rate is: mm of filament extruded per mm of print head
movement (mm/mm). The command t.extrude(amount_mm) can be
used to extrude filament in-place without moving the turtle.

The command t.rate(rate_mm/s) sets the speed of the print head,
in millimetes traveled per second. The default speed is 1000 mm/s.
The commands t.extruder_temp(temp_C) and t.bed_temp(temp_C)

control the temperature of the extruder and print bed respectively.
These variables can impact extrusion stiffness and bed adhesion.
The t.dwell(ms) and t.pause_and_wait() commands allow us to
control the timing of the print. The t.dwell(ms) command pauses
for the given number of milliseconds and can be useful when very
precise control of extrusion is needed. The t.pause_and_wait() com-
mand allows us to generate prints that involve user interaction. A
listing of all printer-related commands, including the G-CODE gen-
erated by each command, can be found on the Extruder Turtle
website [4].

Our library also includes a set of header and footer files that write
G-CODE initialization and finishing sequences to the beginning
and end of our generated G-CODE files. A program can also read
information from these files, including the size of the print bed,
the location of the center of the bed and so on. This structure
enables us to work with different 3D printers quickly and easily;
we can include machine-specific initialization sequences and other
information in these files.

4 EXTRUDER TURTLE PRINTS
We used our ExtruderTurtle library to explore a range of appli-
cations. We aimed to: 1) replicate work of previous researchers,
demonstrating the library’s usefulness and versatility, and 2) gener-
ate novel forms, illustrating how it can support and encourage new
research. Novel forms described in this section include the pine
tree structures described in section 4.3 and the textile structures
described in section 4.5. To our knowledge, this is the first time
that a Turtle Graphics approach has been used to generate all other
forms as well, with the exception of the Hilbert Curve discussed
in section 4.2. All of the examples we present were printed with
1.75mm white PLA filament, using a .4mm nozzle on either a Prusa
i3 MK3S or a Creality Ender 3 printer.

4.1 Basic Shapes
Before we discuss more complex examples, it is worth noting that
there are many advantages to using our library to generate simple

Extruder-Turtle: A Library for 3D Printing Delicate, Textured, and Flexible Objects TEI ’22, February 13–16, 2022, Daejeon, Republic of Korea

geometrical figures. Shapes that have walls that are the width of
a single strand of extruded filament can be printed very quickly,
and by adjusting the speed and extrusion rate for these prints, it
is possible to create objects with a range of stiffnesses. Figure 3
shows two hexagonal prisms. The thick and sturdy prism on the
right was printed with an extrude rate of .1mm/mm. The delicate,
flexible, and slightly translucent prism on the left was printed with
an extrude rate of .02mm/mm. Both were printed at the default
speed of 1000mm/s, and each 28 x 30 x 12mm prism took under
sevenminutes to print. Figure 3 also shows the very simple program
that generates the hexagonal prisms. Here, our code mimics a slicer,
stacking sixty layers of thin hexagons to build the shape.

Figure 3: Left: Simple code that generates a hexagonal prism.
Right: Two prisms printed with different extrude rates.

The procedure above generates hollow tubes. We often want to
print shapes with a bottom. There are two straightforward ways
of generating a solid layer using a turtle. We can employ either a
zig-zag or concentric path to fill a shape outline. Figure 4 shows
a few of these basic shapes. For more extensive discussion of all
of our examples, including example code, see the Extruder Turtle
website [4].

Figure 4: A pentagonal prism with a bottom and solid cubes
with different fill densities.

Functions like these are, of course, built into slicing software,
but it is useful to be able to carry out basic slicing/stacking tasks
in conjunction with more exotic G-CODE generation. We present
these examples to introduce our library and suggest its potential,
and also because we will use some of this functionality in the
examples we discuss below.

4.2 Fractals
One affordance of the turtle representation is that it facilitates the
design of fractal structures that would be cumbersome to describe
in other ways. By interpreting an L-System as a set of turtle instruc-
tions, intricate figures can be generated [17]. L-system rules define
a set of substitutions–typically a single character is substituted
by a collection of several characters–to be undertaken during one

iteration of the system. An L-System "word", a series of characters,
can be translated into a turtle shape; each character in the L-System
is interpreted as a turtle command, like forward or right. With each
successive iteration of the L-System, simple turtle paths are replaced
with more complex ones. Figure 5, shows an example structure, a
sculpture showcasing successive iterations of the Koch Snowflake
curve stacked atop each other. In this L-system, a straight path is
substituted for a strait path with a triangle jutting out of the middle
at each iteration.

Figure 5: A sculpture generated by stacking successive itera-
tions of Koch curves.

We have found that 3D printed space-filling curves, which can
also be generated using L-Systems, have interesting mechanical
properties. These curves fill the plane with a single non-intersecting
line (see [17], page 12). A 3D print of a 2D space-filling curve,
extruded in the z direction, retains its 2D shape at rest, but can
stretch to over twice its resting width when extended. Figure 6
shows a Hilbert curve in its resting and extended states.

Figure 6: A 3D-printed Hilbert curve relaxed and extended.

Slicers are capable of producing the examples we have shown
so far. However, the Turtle Geometry framework encourages a
different and we would argue useful way of working and think-
ing. Furthermore, for many simple design tasks, ExtruderTurtle
facilitates the writing of simple and elegant code, a streamlined
workflow, and very quick printing.

4.3 Hairs and Webs
ExtruderTurtle can be used to generate hair like-structures that
are impossible to generate with a slicer. We have found that the
easiest way to create hair is to print it parallel to the print bed and
to anchor strands to solid structures on both ends, following the
fiber-bridging technique described in [10] and [26]. The hair will
remain permanently attached to a structure on one end. The other
end-structure serves as a support, insuring that the filament dries
properly and does not interfere with subsequent paths taken by
the 3D printer. The support can be removed with scissors or a mat
knife when the print is finished.

TEI ’22, February 13–16, 2022, Daejeon, Republic of Korea Franklin Dyer and Leah Buechley

To generate a basic fiber-bridging print, the turtle first builds a
support consisting of two solid vertical structures, a hair-length
apart. This keeps the hairs off the print bed. Next, the turtle takes a
zig-zagging path, back and forth across the supports. On each pass,
a single strand of filament is extruded. Another layer of support is
printed before a second hair layer is added.

We were also able to print fine hairs using a technique described
by Laput et al., where the print head moves quickly away from
an extrusion blob to generate a more fiber-like strand [10]. This
approach, employed in conjunction with printed supports, was
especially successful. Figure 7 shows a variety of "hairy" prints.

Figure 7: A collection of hairs, brushes, and bristles.

We can use similar techniques to print structures with closed-
loop hairs. For instance, in the pine tree structures that are shown in
Figure 8, right, the branches consist of closed loops with endpoints
lying on the trunk. Notice that the branches of the printed tree are
not perpendicular to the trunk, nor do they have sharp corners.
After being extruded, these loops of warm filament deform and sag
under their own weight, giving them a more natural appearance.
The contrast between the visualization, as generated by the code,
and the printed shape can be seen in Figure 8, center.

Figure 8: Pine Trees. Left: A visualization in Rhino.
Right: Printed trees.

We can also use single-filament extrusions to create string art
sculptures. Lovely mathematical models can be constructed in this
fashion [13, 35]. For example, Figure 9 left shows a classic mathe-
matical figure, where a parabola is created from a series of straight
lines.

Figure 9 right shows a string art cardiod. This was produced
using the following basic algorithm: a number, N , of equally spaced
points are placed around the circumference of a circle, and each
point in position n is joined to the point in position 2n by a piece of

string. The way in which the strings overlap each other creates an
emergent image of a cardioid. The example in Figure 9 is printed
with N = 67 points, 66 layers and 8 chords per layer.

Figure 9: String art sculptures. Left: Classic geometry. Right:
A cardioid.

4.4 Surface Texture
By adding small perturbations to the turtle’s path, bumps can be
added to smooth surfaces, giving them a braille-like texture. Here,
we again employ the powerful general principle of replacing a sim-
ple turtle path with a complex one that ends in the same location.
Two paths are equivalent with respect to the larger geometric pro-
cedure as long as the turtle eventually ends up in the same location;
a bumpy path can be substituted for any straight one. Note that this
is the same principle we employed to generate the fractal patterns
described earlier. Turtle Geometry provides an especially simple
and elegant way of describing these kinds of patterns.

Figure 10: Top: A program that generates a prismwith a ran-
domly placed 2mm bumps. Bottom, left: bump density in-
creases from bottom to top, right: bumps generated by a 2D
cellular automaton using Wolfram’s "Rule 30" [33].

Adjusting the size and angle of bumps in our program can give
rise to different textures: for example, printing layers of bumps that
protrude from the surface at an angle creates a texture that feels
smoothwhen rubbed in one direction, and sharpwhen rubbed in the
opposite direction. The distribution of bumps can be patterned or
random, or some combination of the two. Figure 10 shows examples
of bumpy artifacts.

Extruder-Turtle: A Library for 3D Printing Delicate, Textured, and Flexible Objects TEI ’22, February 13–16, 2022, Daejeon, Republic of Korea

Using a technique described by Takahashi & Miyashita, we can
also imbue 3D prints with irregular ruffled textures. Increasing the
size of the gap between the extruder nozzle and the previous layer
of a print leaves room for filament to "wiggle" before adhering to
the previous layer, introducing some irregularity. Increasing the
extrusion rate forces strands of molten filament to "curl up" as they
are deposited. The interesting textures shown in Figure 11 resulted
from applying an increase in extruder height and extrusion rate to
a simple seven-pointed star.

Figure 11: Star-shaped prints demonstrating how layer sep-
aration affects texture in prints with curly lines of filament.

The size of the initial "gap" between the nozzle and the print
bed is not the only important parameter for these prints. In order
to maintain a consistent texture throughout, the layer height h
also needs to be tuned. For the prints we have discussed so far,
h = 0.2mm. However, when the filament is curly, each layer is
vertically thicker. Ifh is much smaller than the thickness of a bumpy
layer, the increasing height of the print will outpace the vertical
movement of the extruder, "closing the gap" between each layer
and the next and causing the layers to become flatter towards the
top of the print, as in the case of z = 0.6, Figure 11 top left. On
the other hand, if h is much larger than the thickness of a bumpy
layer, the gap between the nozzle and the print will grow, causing
layers to be increasingly separated and irregular, as in the cases
z = 0.9, 1.2, Figure 11 bottom. These phenomena can be utilized
deliberately to create a print with a texture gradient from bottom
to top, or h can be tuned to ensure a constant texture throughout,
as in the case of z = 0.7, Figure 11 top right.

4.5 Textile-Like Structures
While experimenting with our library we discovered that flexible
textile-like structures can be produced with very simple turtle pro-
grams. While different 3D printed textiles have been explored by
previous researchers [29], our approach to creating such structures
is original.

We described earlier how flexible structures can be generated by
simply decreasing the printer’s extrude rate. However, lowering the
extrude rate too much can cause print layers to become fragile and
separate from each other, and this technique is often insufficient to
create prints that have the true flexibility of textiles.

By repeating patterns of local movements, similar to those used
to generate novel textures, we can create textile-like surfaces. We
instruct the turtle to make many short movements perpendicular

Figure 12: Flexible circles with different extrusion
densities, affecting their flexibility and transparency.

to the direction of the surface as it traces out the shape. When
the turtle makes a quick movement perpendicular to the surface,
a small amount of filament is dragged away from the surface, and
onto a protrusion. This approach gives rise to structures consisting
of many thick "pillars" connected by thin wisps of plastic. Despite
the fragile appearance of the structures shown in Figure 12, the
overall prints are surprisingly strong. It is also possible to print flat
sheets of flexible material using the same technique.

4.6 Nonplanar Slicing
In prints with very gently graded surfaces, the use of slicers can of-
ten lead to conspicuously low print quality due to a "stair-stepping"
effect. However, quality can be improved by printing layers that
are slightly curved instead of perfectly flat, which is beyond the
functionality of most slicer software. The ability to print non-planar
paths can also be leveraged for other purposes.

Note that collisions, with either the extruder (Figure 13 right) or
the box surrounding the print-head (Figure 13 left), are a significant
issue for non-planar prints. Collision points differ for different
printers and nozzles.

Figure 13: Two kinds of collisions that must be avoided on
non-planar paths.

Consider a variation of the seven-pointed star introduced earlier,
in which the middle of the star bulges upwards (Figure 14). In
this case, the strands of filament joining two vertices of the star
are not straight lines, but slightly concave in the z-direction. A
parabolic path can be drawn for each edge of the shape. Again, we
can leverage the principle of replacing a simple path with a more
complex one. As long as the parabolic path ends in the same place
the straight path did (as long as the total z-displacement along the
path is 0) it can be substituted for the straight path.

If we let a = h/X for each turtle step along a parabolic path,
whereh is the desired height of the parabola andX is 1/2 of the total
path distance, the maximum z-displacement will be given by Xh/2

TEI ’22, February 13–16, 2022, Daejeon, Republic of Korea Franklin Dyer and Leah Buechley

Figure 14: Nonplanar seven-pointed star printed with shal-
lowly parabolically curved layers.

(in mm). If we wanted to draw a parabolic layer with a specific
maximum z-displacement, we can use this equation to solve for
appropriate values of X and h. Z-displacements that are too large
can cause collisions, so this formula can be used to choose X and h
in such a way that ensures no collisions will occur.

Since the bottom layer of the star-shaped solid should be flat,
and the top layer should be the most concave, we employ a gradient
to vary the steepness of the layers linearly from the bottom to the
top layer. The final program to generate the finished star is also
pictured in Figure 14.

Figure 15: Nonplanar vase with a sinusoidal oscillation
along the rim.

Similar techniques can be used for more complex curves, as
long as they are shallow enough to avoid collisions. Despite this
constraint, interesting prints are possible. Figure 15, for example,
shows a vase with a sinusoidal oscillation in height along the rim.

5 DISCUSSION
Despite its utility for generating the designs described above, the 3D
turtle paradigm has a few drawbacks. One limitation is that Turtle
Geometry’s emphasis on local movement makes it difficult to design
prints with complex geometry that lack convenient symmetries or
simple low-level descriptions. For instance, it would be infeasible
to use ExtruderTurtle to generate, say, a figurine in the shape of
a human or animal, since they do not admit a simple geometrical
description.

In general, using a slicer to generate G-CODE insures that most
prints will be successful. When generating custom G-CODE, with
our library or through other means, there are countless opportuni-
ties for failure. The workflow process is often more time consuming,

since printing success is not guaranteed. Some prints require close
supervision because inappropriate G-CODE can damage the printer.
The extruder can be moved outside the bounds of the print area in
the x, y, or z direction. (Crashing the print head into the build plate
can be particularly damaging.) Other routines can clog the extruder
by extruding too much filament when the extruder is close to the
print-bed.

Avoiding collisions on a print can also be a challenge. Even
if the extruder tip follows a path that doesn’t collide with any
previously printed paths, the nozzle or the print-head box may, as
shown in Figure 13. Collision avoidance is particularly challenging
in the Turtle Geometry framework, with its emphasis on purely
local geometry. Collisions can mostly be avoided by making careful
calculations, such as those described in the section on nonplanar
slicing, and by working in the Grasshopper/Rhino environment so
that paths can be visualized prior to printing.

When generating delicate structures, we have found that some
parameters–like extrude rate, speed, and temperature–may need to
be re-tuned for different filaments as well as different 3D printers.
Tuning can be a painstaking process that involves generating and
printing many iterations of a design. Different filaments produce
better results for different prints. For instance, Wood PLA–a fila-
ment that is a combination of plastic and wood particles– is stiffer
than pure PLA and produces especially nice brushes and string
sculptures.

Some of these drawbacks could be addressed by adding more
slicer-like functionality to our software. For instance, it could present
a warning whenever a turtle moves outside of the print-area, or
prevent the writing of G-CODE for such paths. Though a significant
undertaking, it should also be possible to add collision detection
to the library. We could also conduct a series of structured tests
on different printers, filaments and parameter settings to develop
guidelines for this aspect of G-CODE generation.

We have found ExtruderTurtle to be a powerful tool for explor-
ing the possibilities of customG-CODE generation.With it, we have
been able to recreate designs proposed by other researchers and,
more importantly, explore a wide range of new forms. We anticipate
using the library regularly, both in research and teaching.

We are also excited to explore using ExtruderTurtle in conjunc-
tion with a wider range of printers. In particular, we are interested
in working with printers that employ unconventional materials,
such as ceramics and food [6, 11, 18]. ExtruderTurtle providesmuch
more flexibility and control over the printer and, thereby, finer con-
trol over unique material properties that may be leveraged on such
machines.

REFERENCES
[1] Harold Abelson and Andrea diSessa. 1980. Turtle Geometry: The Computer as a

Medium for Exploring Mathematics. The MIT Press.
[2] Atheer Awad, Aliya Yao, Sarah J. Trenfield, Alvaro Goyanes, Simon Gaisford,

and Abdul W. Basit. 2020. 3D Printed Tablets (Printlets) with Braille and Moon
Patterns for Visually Impaired Patients. Pharmaceutics 12, 2 (Feb. 2020), 172.
https://doi.org/10.3390/pharmaceutics12020172

[3] Donald Degraen, André Zenner, and Antonio Krüger. 2019. Enhancing Texture
Perception in Virtual Reality Using 3D-Printed Hair Structures. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems. ACM, Glasgow
Scotland Uk, 1–12. https://doi.org/10.1145/3290605.3300479

[4] Franklin Dyer. 2021. Extruder Turtle Website. https://handandmachine.org/
projects/extruder_turtle/index.html

https://doi.org/10.3390/pharmaceutics12020172
https://doi.org/10.1145/3290605.3300479
https://handandmachine.org/projects/extruder_turtle/index.html
https://handandmachine.org/projects/extruder_turtle/index.html

Extruder-Turtle: A Library for 3D Printing Delicate, Textured, and Flexible Objects TEI ’22, February 13–16, 2022, Daejeon, Republic of Korea

[5] Michael Eisenberg. 2005. Technology and the Future of Educational Crafts.
Educational Technology 45, 3 (2005), 3–11. https://www.jstor.org/stable/44429206
Publisher: Educational Technology Publications, Inc.

[6] Chang He, Min Zhang, and Zhongxiang Fang. 2020. 3D printing of food: pretreat-
ment and post-treatment of materials. Critical Reviews in Food Science and Nutri-
tion 60, 14 (Aug. 2020), 2379–2392. https://doi.org/10.1080/10408398.2019.1641065

[7] Yasusi Kanada. 2015. "3D Turtle Graphics" by using a 3D Printer. Journal of
Engineering Research and Applications 5 (April 2015), 70–77.

[8] Yasusi Kanada. 2016. Method for Procedural 3D Printing Using a Python Library.
Journal of Information Processing 24, 6 (2016), 908–916. https://doi.org/10.2197/
ipsjjip.24.908

[9] Yasusi Kanada. 2018. Complex Moiré Patterns Generated by Helical 3D Printing
with Three Waves. (2018), 2.

[10] Gierad Laput, Xiang ’Anthony’ Chen, and Chris Harrison. 2015. 3D Printed Hair:
Fused Deposition Modeling of Soft Strands, Fibers, and Bristles. In Proceedings of
the 28th Annual ACM Symposium on User Interface Software & Technology. ACM,
Charlotte NC USA, 593–597. https://doi.org/10.1145/2807442.2807484

[11] Alain Le-Bail, Bianca Chieregato Maniglia, and Patricia Le-Bail. 2020. Recent
advances and future perspective in additive manufacturing of foods based on
3D printing. Current Opinion in Food Science 35 (Oct. 2020), 54–64. https:
//doi.org/10.1016/j.cofs.2020.01.009

[12] LIA. [n.d.]. Filament Sculptures – LIA. https://www.liaworks.com/theprojects/
filament-sculptures/

[13] Jon Millington. 1999. Curve Stitching: Art of Sewing Beautiful Mathematical
Patterns (2007th edition ed.). Tarquin Group, Diss. String art, string-art.

[14] Stefanie Mueller, Sangha Im, Serafima Gurevich, Alexander Teibrich, Lisa Pfis-
terer, François Guimbretière, and Patrick Baudisch. 2014. WirePrint: 3D printed
previews for fast prototyping. In Proceedings of the 27th annual ACM symposium
on User interface software and technology. ACM, Honolulu Hawaii USA, 273–280.
https://doi.org/10.1145/2642918.2647359

[15] Jifei Ou, Gershon Dublon, Chin-Yi Cheng, Felix Heibeck, Karl Willis, and Hi-
roshi Ishii. 2016. Cilllia: 3D Printed Micro-Pillar Structures for Surface Tex-
ture, Actuation and Sensing. In Proceedings of the 2016 CHI Conference on Hu-
man Factors in Computing Systems. ACM, San Jose California USA, 5753–5764.
https://doi.org/10.1145/2858036.2858257

[16] Seymour Papert. 1980. Mindstorms: children, computers, and powerful ideas. Basic
Books, New York, NY.

[17] Przemyslaw Prusinkiewicz, Aristid Lindenmayer, J. S. Hanan, F. D. Fracchia, D. R.
Fowler, M. J. M. de Boer, and L. Mercer. 1990. The Algorithmic Beauty of Plants
(first edition ed.). Springer, New York Heidelberg.

[18] Ronald Rael, Virginia San Fratello, Barrak Darweesh, Constantina Tsiara, and
Alexander Curth. 2020. POTTERWARE. https://www.potterware.com/docs

[19] RepRap. [n.d.]. G-code Reference Wiki. https://reprap.org/wiki/G-code
[20] Mitchel Resnick, BradMyers, Kumiyo Nakakoji, Ben Shneiderman, Randy Pausch,

Ted Selker, and Mike Eisenberg. 2005. Design principles for tools to support
creative thinking. (2005).

[21] Manuel Riel and Ralf Romeike. 2020. Fundamental Concepts of 3D Turtle Geom-
etry. CONSTRUCTIONISM 2020 (2020), 332.

[22] Manuel Riel and Ralf Romeike. 2021. 3D Print your Artifacts–3D Turtle Geometry
as an Introduction to Programming. In 2021 IEEE Global Engineering Education
Conference (EDUCON). IEEE, 1454–1461.

[23] Rosenbaum, Eric. [n.d.]. Beetle Blocks - Visual code for 3D design. http:
//www.beetleblocks.com/

[24] L. Sabantina, F. Kinzel, A. Ehrmann, and K. Finsterbusch. 2015. Combining 3D
printed forms with textile structures - mechanical and geometrical properties of
multi-material systems. IOP Conference Series: Materials Science and Engineering
87 (July 2015), 012005. https://doi.org/10.1088/1757-899X/87/1/012005 Publisher:
IOP Publishing.

[25] Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio,
andMarkus Gross. 2015. Microstructures to control elasticity in 3D printing. ACM
Transactions on Graphics 34, 4 (July 2015), 1–13. https://doi.org/10.1145/2766926

[26] Sevenson, Brittney. 2014. Incredible 3D Printed Paintbrush, Broom, & More
Created with Fiber Bridging Technique. https://3dprint.com/32480/3d-print-
paintbrush-bridging/

[27] Jaeeun Shin, Jundong Cho, and Sangwon Lee. 2020. Please Touch Color: Tactile-
Color Texture Design for The Visually Impaired. In Extended Abstracts of the
2020 CHI Conference on Human Factors in Computing Systems. ACM, Honolulu
HI USA, 1–7. https://doi.org/10.1145/3334480.3383003

[28] Cynthia J. Solomon and Seymour Papert. 1976. A case study of a young child
doing turtle graphics in LOGO. In Proceedings of the June 7-10, 1976, national
computer conference and exposition on - AFIPS ’76. ACM Press, New York, New
York, 1049. https://doi.org/10.1145/1499799.1499945

[29] Haruki Takahashi and Jeeeun Kim. 2019. 3D Printed Fabric: Techniques for Design
and 3D Weaving Programmable Textiles. In Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology (UIST ’19). Association
for Computing Machinery, New York, NY, USA, 43–51. https://doi.org/10.1145/
3332165.3347896

[30] Haruki Takahashi and Homei Miyashita. 2017. Expressive Fused Deposition
Modeling by Controlling Extruder Height and Extrusion Amount. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, Denver
Colorado USA, 5065–5074. https://doi.org/10.1145/3025453.3025933

[31] Sebastian Teo. 2018. Droid - 3d Print Slicer and Path Plotter. https://www.
food4rhino.com/en/app/droid-3d-print-slicer-and-path-plotter

[32] Tom Verhoeff. 2010. 3D turtle geometry: artwork, theory, program equivalence
and symmetry. International Journal of Arts and Technology 3, 2/3 (2010), 288.
https://doi.org/10.1504/IJART.2010.032569

[33] Eric W. Weisstein. [n.d.]. Rule 30. https://mathworld.wolfram.com/Rule30.html
Publisher: Wolfram Research, Inc.

[34] Ursula Wolz, Michael Auschauer, and Andrea Mayr-Stalder. 2019. Programming
embroidery with turtlestitch. In ACM SIGGRAPH 2019 Studio (SIGGRAPH ’19).
Association for Computing Machinery, New York, NY, USA, 1–2. https://doi.
org/10.1145/3306306.3328002

[35] Robert C. Yates. 1974. Curves and their properties (reprint edition ed.). National
Council of Teachers of Mathematics.

https://www.jstor.org/stable/44429206
https://doi.org/10.1080/10408398.2019.1641065
https://doi.org/10.2197/ipsjjip.24.908
https://doi.org/10.2197/ipsjjip.24.908
https://doi.org/10.1145/2807442.2807484
https://doi.org/10.1016/j.cofs.2020.01.009
https://doi.org/10.1016/j.cofs.2020.01.009
https://www.liaworks.com/theprojects/filament-sculptures/
https://www.liaworks.com/theprojects/filament-sculptures/
https://doi.org/10.1145/2642918.2647359
https://doi.org/10.1145/2858036.2858257
https://www.potterware.com/docs
https://reprap.org/wiki/G-code
http://www.beetleblocks.com/
http://www.beetleblocks.com/
https://doi.org/10.1088/1757-899X/87/1/012005
https://doi.org/10.1145/2766926
https://3dprint.com/32480/3d-print-paintbrush-bridging/
https://3dprint.com/32480/3d-print-paintbrush-bridging/
https://doi.org/10.1145/3334480.3383003
https://doi.org/10.1145/1499799.1499945
https://doi.org/10.1145/3332165.3347896
https://doi.org/10.1145/3332165.3347896
https://doi.org/10.1145/3025453.3025933
https://www.food4rhino.com/en/app/droid-3d-print-slicer-and-path-plotter
https://www.food4rhino.com/en/app/droid-3d-print-slicer-and-path-plotter
https://doi.org/10.1504/IJART.2010.032569
https://mathworld.wolfram.com/Rule30.html
https://doi.org/10.1145/3306306.3328002
https://doi.org/10.1145/3306306.3328002

	Abstract
	1 Introduction
	2 Previous Work
	2.1 Turtle Geometry and 3D Printing
	2.2 Custom-Generated G-CODE

	3 The extruder-turtle library
	3.1 Methods Controlling Path Geometry
	3.2 Methods controlling Filament Deposition

	4 EXTRUDER TURTLE PRINTS
	4.1 Basic Shapes
	4.2 Fractals
	4.3 Hairs and Webs
	4.4 Surface Texture
	4.5 Textile-Like Structures
	4.6 Nonplanar Slicing

	5 Discussion
	References

