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1. Defining growth orders

1.1. Definition of a growth order

The class of sequences that we will deal with shall be denoted S(R+), the set of sequences of
positive real numbers. Notice that this is not what would traditionally be called a sequence
space, because it is not even a vector space. It comes with operations of addition and scalar
multiplication, but the underlying set of scalars R+ is not a eld, as it lacks a zero element and
additive inverses. We’ve sacriced these properties for a reason: growth orders are meant to
formalize the notion of asymptotic relative growth of sequences, and the negative real numbers
and 0 aren’t amenable to the concept of "relative size".

Denition 1. Let 𝛼 = (𝑎𝑛) and 𝛽 = (𝑏𝑛) be two sequences in S(R+). We will say that
𝛼, 𝛽 have the same growth order, or 𝛼 ∼ 𝛽 , if there exist constants 𝐶1,𝐶2 ∈ R+ such that

𝐶1𝑏𝑛 ≤ 𝑎𝑛 ≤ 𝐶2𝑏𝑛

for all 𝑛 ∈ N.

There are several equivalent ways of thinking of this denition. The statement 𝛼 ∼ 𝛽 is easily
shown to be equivalent to each of the following:

• Both of the quotients 𝑎𝑛/𝑏𝑛 and 𝑏𝑛/𝑎𝑛 are bounded above in R+.

• The quotient 𝑎𝑛/𝑏𝑛 is bounded above and below by two strictly positive constants.

• 𝑎𝑛 = Θ(𝑏𝑛), or equivalently 𝑏𝑛 = Θ(𝑎𝑛), for those two are familiar with asymptotic
notation.

• Both 𝑎𝑛 = O(𝑏𝑛) and 𝑏𝑛 = O(𝑎𝑛).

• The following limits are nite and positive:

lim sup
𝑛→∞

𝑎𝑛

𝑏𝑛
lim inf
𝑛→∞

𝑎𝑛

𝑏𝑛

Now we shall prove that ∼ denes an equivalence relation on S(R+). The equivalence classes,
consisting of all sequences with the same growth order, will be the objects that we refer to as
growth orders.

Proposition 1. The relation ∼ on sequences in S(R+) is an equivalence relation.
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1. Dening growth orders

Proof. Reexivity follows trivially from the denition, taking 𝐶1 = 𝐶2 = 1 so that 𝐶1𝑎𝑛 ≤ 𝑎𝑛 ≤
𝐶2𝑎𝑛 for all 𝑛 ∈ N, and (𝑎𝑛) ∼ (𝑎𝑛) for all sequences (𝑎𝑛) ∈ S(R+).

To show symmetricity, suppose that (𝑎𝑛) ∼ (𝑏𝑛) for some sequences (𝑎𝑛), (𝑏𝑛) ∈ S(R+). Then
we have that

𝐶1𝑏𝑛 ≤ 𝑎𝑛 ≤ 𝐶2𝑏𝑛

for some 𝐶1,𝐶2 ∈ R+. This implies, however, that

𝐶−1
2 𝑎𝑛 ≤ 𝑏𝑛 ≤ 𝐶−1

1 𝑎𝑛

and therefore (𝑏𝑛) ∼ (𝑎𝑛), as desired.

Finally, to show transitivity, suppose that (𝑎𝑛) ∼ (𝑏𝑛) and (𝑏𝑛) ∼ (𝑐𝑛) for some sequences
(𝑎𝑛), (𝑏𝑛), (𝑐𝑛) ∈ S(R+). Then we have that

𝐶1𝑏𝑛 ≤ 𝑎𝑛 ≤ 𝐶2𝑏𝑛

𝐶3𝑐𝑛 ≤ 𝑏𝑛 ≤ 𝐶4𝑐𝑛

for some constants 𝐶1,𝐶2,𝐶3,𝐶4 ∈ R+. This implies, however, that

𝐶1𝐶3𝑐𝑛 ≤ 𝑎𝑛 ≤ 𝐶2𝐶4𝑐𝑛

and therefore (𝑎𝑛) ∼ (𝑐𝑛), so that transitivity holds as claimed. �

Now we are prepared to dene growth orders as equivalence classes:

Denition 2. A growth order is dened as an equivalence class that is an element of
S(R+)/∼. If 𝛼 = (𝑎𝑛) ∈ S(R+), then the growth order of 𝛼 is the equivalence class of 𝛼
under ∼, and may be denoted [𝛼] or [𝑎𝑛].

We will often use the font 𝔞 to refer to growth orders, so that Latin letters like 𝑎𝑛 will refer to
elements of sequences, Greek letters 𝛼 will refer to sequences, and old German letters like 𝔞
will refer to equivalence classes of sequences comprising growth orders.

Exercise 1 Show that there are uncountably many distinct growth orders.

Exercise 2 Show that each growth order contains uncountably many sequences.

Exercise 3 Let (𝑎𝑛) ∈ 𝔞 and (𝑏𝑛) ∈ 𝔟 be sequences of arbitrary growth orders. Determine if
each statement is true or false in general.

1. If 𝑎𝑛 = 𝑏𝑛 for all but nitely many values of 𝑛, then (𝑎𝑛) ∼ (𝑏𝑛).

2. If |𝑎𝑛 − 𝑏𝑛 | → 0 as 𝑛 → ∞, then (𝑎𝑛) ∼ (𝑏𝑛).

3. If 𝑎𝑛/𝑏𝑛 → 1 as 𝑛 → ∞, then (𝑎𝑛) ∼ (𝑏𝑛).

Exercise 4 Show that, for any sequence (𝑎𝑛) in a growth order 𝔞, there exists a sequence
(𝑎′𝑛) ∈ 𝔞 such that 𝑎𝑛 ≤ 𝑎′𝑛 for all 𝑛 ∈ N.
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1. Dening growth orders

1.2. Common growth orders

This is just a short section meant to establish notation that we will use later in the write-up to
denote some commonly-occurring growth orders.

• 1 denotes the constant growth order [(1)].

• 𝔫 denotes the growth order [(𝑛)].

• 𝔫𝑝 denotes the growth order [(𝑛𝑝)], for 𝑝 ∈ R+.

• 𝔲 denotes the pathological growth order [(𝑛 (−1)𝑛 )], which we will often use as a coun-
terexample because of its oscillatory nature.

• 𝔩 denotes the growth order [(log𝑛)].

• 𝔩𝑚 denotes the growth order [(log · · · log𝑛)], where there are𝑚 nested logs.

• 𝔩(𝑝0, 𝑝1, · · · , 𝑝𝑚) denotes the growth order of the sequence

𝑛𝑝0 (log𝑛)𝑝1 · · · (

𝑚 nested logs︷      ︸︸      ︷
log · · · log 𝑛)𝑝𝑚

which, of course, must be dened for 𝑛 ≥ d𝑚𝑒e, where the superscript denotes tetration
here.

1.3. Moderate growth orders

Now that we’ve dened growth orders in general, we’ll dene a certain class of sequences that
we will pay particular attention to.

Denition 3. Let us call 𝛼 ∈ S(R+) a sequence ofmoderate growth if, for any 𝑘 ∈ N,
there exist constants 𝐶1,𝐶2 ∈ R+ such that

𝐶1𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶2𝑎𝑛

for all 𝑛,𝑚 ∈ N with 𝑛 ≤ 𝑚 ≤ 𝑘𝑛.

This "niceness" condition will become useful later, for dening operations such as the composi-
tion of two sequences. Although it is not immediately obvious from the denition, moderate
growth can be equated, in some weak sense, with polynomial growth. To be precise, every
moderate sequence that is bounded between power-sequences of the form (𝐶𝑛𝑝) with 𝑝 ∈ R
and 𝐶 ∈ R+,.
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1. Dening growth orders

Proposition 2. If a sequence 𝛼 = (𝑎𝑛) ∈ S(R+) exhibits moderate growth, then there exist
𝑝, 𝑞 ∈ R and 𝐶1,𝐶2 ∈ R+ such that

𝐶1𝑛
𝑝 ≤ 𝑎𝑛 ≤ 𝐶2𝑛

𝑞

for all 𝑛 ∈ N. The converse is not true, but any sequence for which the above inequality
holds with 𝑝 = 𝑞 necessarily has moderate growth.

Proof. Suppose that (𝑎𝑛) exhibits moderate growth. Then let 𝐶1,𝐶2 be constants such that

𝐶1𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶2𝑎𝑛

for all 𝑛 ≤ 𝑚 ≤ 2𝑛. Inductively, we may show that for any 𝑛 ∈ N,

𝑎𝑛 ≤ 𝐶2𝑎 d𝑛/2e ≤ 𝐶2
2𝑎 d𝑛/4e ≤ · · · ≤ 𝐶 dlog2 𝑛e

2 𝑎1 ≤ 𝑎1max(1,𝐶2) · 𝑛log2𝐶2

and similarly

𝑎𝑛 ≥ 𝐶1𝑎 d𝑛/2e ≥ 𝐶2
1𝑎 d𝑛/4e ≥ · · · ≥ 𝐶 dlog2 𝑛e

1 𝑎1 ≥ 𝑎1min(1,𝐶1) · 𝑛log2𝐶1

and so we have
𝑎1min(1,𝐶1) · 𝑛log2𝐶1 ≤ 𝑎𝑛 ≤ 𝑎1max(1,𝐶2) · 𝑛log2𝐶2

which proves the rst claim, taking 𝑝 = log2𝐶1 and 𝑞 = log2𝐶2.

To see why the converse is not true, consider, for instance, the sequence 𝑎𝑛 = 𝑛 (−1)
𝑛 . For all odd

𝑚 ∈ N, we have 𝑎𝑚 = 1/𝑚, whereas 𝑎2𝑚 = 𝑚, meaning that 𝑎2𝑚/𝑎𝑚 = 𝑚2 is unbounded, and
(𝑎𝑛) does not satisfy the moderate growth property.

However, if we are given that
𝐶1𝑛

𝑝 ≤ 𝑎𝑛 ≤ 𝐶2𝑛
𝑝

where 𝑝 ∈ R and 𝐶1,𝐶2 ∈ R+ (the stronger special case in which 𝑝 = 𝑞), moderate growth
follows. For we have that if 𝑛 ≤ 𝑚 ≤ 𝑘𝑛 for some xed 𝑘 ∈ N, then

𝑎𝑚 ≤ 𝐶2𝑚
𝑝 ≤ 𝐶2max(1, 𝑘𝑝)𝑛𝑝 ≤ 𝐶2max(1, 𝑘𝑝)

𝐶1
𝑎𝑛

and
𝑎𝑚 ≥ 𝐶1𝑚

𝑝 ≥ 𝐶1min(1, 𝑘𝑝)𝑛𝑝 ≥ 𝐶1min(1, 𝑘𝑝)
𝐶2

𝑎𝑛

so that we have
𝐶1min(1, 𝑘𝑝)

𝐶2
𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶2max(1, 𝑘𝑝)

𝐶1
𝑎𝑛

for all 𝑛 ∈ N and𝑚 ∈ N with 𝑛 ≤ 𝑚 ≤ 𝑘𝑛, so that it follows that (𝑎𝑛) has moderate growth by
denition. �
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1. Dening growth orders

Here are some propositions that provide sucient (equivalent) conditions for moderacy that
have less stringent requirements, and are therefore easier to prove for some sequences.

Proposition 3. In order for 𝛼 ∈ S(R+) to exhibit moderate growth, it is sucient for there
to exist 𝐶1,𝐶2 ∈ R+ such that

𝐶1𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶2𝑎𝑛

for all 𝑛,𝑚 ∈ N with 𝑛 ≤ 𝑚 ≤ 2𝑛. In other words, it suces to nd such constants for the
case of 𝑘 = 2 in the denition of moderate growth.

Proof. Suppose that such constants 𝐶1,𝐶2 > 0 exist for 𝑘 = 2, and suppose WLOG that 𝐶1 < 1
and 𝐶2 > 1 (for if not, we may simply decrease 𝐶1 below 1 and increase 𝐶2 above 1, weakening
the inequality). Then we may show by induction that for all 𝑞 ∈ N, and for all𝑚,𝑛 ∈ N with
𝑛 ≤ 𝑚 ≤ 2𝑞𝑛, the following inequality holds:

𝐶
𝑞

1𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶𝑞2𝑎𝑛

As our inductive hypothesis, we assume that this holds for some value of 𝑞. Then we clearly
have that

𝐶1𝑎2𝑞𝑛 ≤ 𝑎𝑚 ≤ 𝐶2𝑎2𝑞𝑛

for all 2𝑞𝑛 ≤ 𝑚 ≤ 2𝑞+1𝑛 which is a direct consequence of our original assumption, in which 𝑛 is
replaced by 2𝑞𝑛. But since 𝐶𝑞1𝑎𝑛 ≤ 𝑎2𝑞𝑛 ≤ 𝐶𝑞2𝑎𝑛 by the inductive hypothesis, we have that

𝐶
𝑞+1
1 𝑎𝑛 ≤ 𝐶1𝑎2𝑞𝑛 ≤ 𝑎𝑚 ≤ 𝐶2𝑎2𝑞𝑛 ≤ 𝐶𝑞+12 𝑎𝑛

and thus
𝐶
𝑞+1
1 𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶𝑞+12 𝑎𝑛

for all 2𝑞𝑛 ≤ 𝑚 ≤ 2𝑞+1𝑛. Since the tighter inequality

𝐶
𝑞

1𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶𝑞2𝑎𝑛
holds for 𝑛 ≤ 𝑚 ≤ 2𝑞𝑛 by the inductive hypothesis, we may combine the two cases of 𝑛 ≤ 𝑚 ≤
2𝑞𝑛 and 2𝑞𝑛 ≤ 𝑚 ≤ 2𝑞+1𝑛 and state that

𝐶
𝑞+1
1 𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶𝑞+12 𝑎𝑛

for all 𝑛 ≤ 𝑚 ≤ 2𝑞+1𝑛.

Thus, the truth of our inequality for some 𝑞 ∈ N implies its truth for 𝑞 + 1. But the base case of
𝑞 = 1 is taken as an assumption, so we have by induction that for all 𝑞 ∈ N and 𝑛 ≤ 𝑚 ≤ 2𝑞𝑛
the inequality

𝐶
𝑞

1𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶𝑞2𝑎𝑛
holds. Since, for all 𝑘 ∈ N, there exists 𝑞 ∈ N such that 2𝑞 ≥ 𝑘 , if some 𝑘 ∈ N is given, we may
choose such a value of 𝑞 ∈ N, and then bound

𝐶
𝑞

1𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶𝑞2𝑎𝑛
for all 𝑛 ≤ 𝑚 ≤ 𝑘𝑛 ≤ 2𝑞𝑛, demonstrating that the sequence (𝑎𝑛) is moderate by denition. �
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1. Dening growth orders

Proposition 4. In order for 𝛼 ∈ S(R+) to exhibit moderate growth, it is sucient for there
to exist 𝐶1,𝐶2 ∈ R+ such that

𝐶1𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶2𝑎𝑛

for all 𝑛,𝑚 ∈ N with 𝑛 ≤ 𝑚 ≤e𝑟𝑛d for some 𝑟 > 1. This is a further weakening of the above
proposition.

Proof. Using a similar argument as shown in the above proof, we may show that if this is true
for some 𝑟 > 1 with 𝐶1 < 1 and 𝐶2 > 1, then it follows that

𝐶
𝑞

1𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶𝑞2𝑎𝑛
for all 𝑛 ≤ 𝑚 ≤ d𝑟𝑞𝑛e, again using a proof by induction. Because 𝑟 > 1, there exists 𝑞 ∈ N such
that 𝑟𝑞 ≥ 2, so that we have

𝐶
𝑞

1𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶𝑞2𝑎𝑛
for all 𝑛 ≤ 𝑚 ≤ 2𝑛 ≤ d𝑟𝑞𝑛e. The result then follows from the previous proposition. �

We may also refer to growth orders as being moderate, depending on whether or not they consist
of sequences of moderate growth. Next up we will prove that no equivalence class contains
both moderate and non-moderate sequences, meaning that it makes sense to say that a growth
order is moderate or non-moderate.

Proposition 5. Let 𝛼, 𝛼 ′ ∈ S(R+) with [𝛼] = [𝛼 ′]. Then 𝛼 exhibits moderate growth i
𝛼 ′ exhibits moderate growth.

Proof. Suppose 𝛼, 𝛼 ′ ∈ S(R+) with [𝛼] = [𝛼 ′], so that

𝐶1𝑎𝑛 ≤ 𝑎′𝑛 ≤ 𝐶2𝑎𝑛

for all 𝑛 ∈ N for some𝐶1,𝐶2 ∈ R+. Suppose WLOG that 𝛼 exhibits moderate growth, so that for
each 𝑘 ∈ N, there exist constants 𝐶3,𝐶4 ∈ R+ such that

𝐶3𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶4𝑎𝑛

for all 𝑛 ∈ N and𝑚 ∈ N between 𝑛 and 𝑘𝑛. Then, if 𝑘 ∈ N is xed, and 𝑛 ≤ 𝑚 ≤ 𝑘𝑛 for some
𝑚,𝑛 ∈ N, we have

𝑎′𝑚 ≤ 𝐶2𝑎𝑚 ≤ 𝐶2𝐶4𝑎𝑛 ≤ 𝐶2𝐶4
𝐶1

𝑎′𝑛

and
𝑎′𝑚 ≥ 𝐶1𝑎𝑚 ≥ 𝐶1𝐶3𝑎𝑛 ≥ 𝐶1𝐶3

𝐶2
𝑎′𝑛

so we have that
𝐶1𝐶3
𝐶2

𝑎′𝑛 ≤ 𝑎′𝑚 ≤ 𝐶2𝐶4
𝐶1

𝑎′𝑛

and therefore 𝛼 ′ has moderate growth. Thus, moderate growth of 𝛼 implies moderate growth
of 𝛼 ′ and vice versa (by symmetry). �
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1. Dening growth orders

The following denition is therefore justied:

Denition 4. A growth order 𝔞 is said to bemoderate if each of its sequences has moderate
growth, and not moderate if none of its sequences has moderate growth.

Moderate growth sequences have some convenient properties that we’ll really come to appreciate
when it’s time to dene the composition operation in a later section. For now, however, we can
state and prove a few of their elementary properties.

Proposition 6. If 𝛼 = (𝑎𝑛) is a moderate growth sequence, then every arithmetic subse-
quence (𝑎 𝑗𝑛+𝑘 ) with 𝑗, 𝑘 ∈ N has the same growth order.

Proof. If 𝑗, 𝑘, 𝑛 ∈ N, then we have 𝑛 ≤ 𝑗𝑛 + 𝑘 ≤ ( 𝑗 + 𝑘)𝑛, so we have (𝑎𝑛) ∼ (𝑎 𝑗𝑛+𝑘 ) by the
moderate growth property of 𝛼 . �

What sorts of horrible sequences do not have this property, you might ask? One example is
the pathological sequence 𝑎𝑛 = 𝑛 (−1)

𝑛 that was used as a counterexample earlier. However,
there are also many naturally-occurring sequences without this property, such as exponential
sequences like 𝑎𝑛 = 2𝑛 , for which (𝑎2𝑛) > (𝑎𝑛).

This gives rise to an important notational issue. Later on in this write-up, I may refer to
sequences such as (log𝑛) or (log log𝑛) which, strictly speaking, aren’t members of S(R+) -
in the former case because log 1 = 0 is not a positive number, and in the latter case because
log log 1 = log 0 does not exist. However, if we are dealing with moderate growth sequences,
the shifted sequence (𝑎𝑛+1) has the same growth order as the original sequence (𝑎𝑛). That is
moderate growth orders are translation-invariant. Hence, for sequences like (log log𝑛), we can
simply shift the sequence over nitely many terms in order to start at the rst term for which
it is dened and in R+. In this case, the sequence remains in R+ for 𝑛 ≥ 3. So when we write
(log log𝑛), we are really referring to the sequence (log log(𝑛 + 3)) ∈ S(R+).

There are, of course, sequences that are not translation-invariant. The classic pathological
example 𝑎𝑛 = 𝑛 (−1)

𝑛 works here as well, but another example that feels less contrived is the
sequence 𝑎𝑛 = 2𝑛2 .

Proposition 7. If 𝛼 = (𝑎𝑛) ∈ 𝔞 is moderate, then( 𝑘𝑛∑︁
𝑖=𝑛

𝑎𝑖

)
∼ (𝑛𝑎𝑛)

for any 𝑘 ∈ N.

Proof. Given 𝑘 ∈ N, if (𝑎𝑛) is moderate, then we have constants 𝐶1,𝐶2 such that 𝐶1𝑎𝑛 ≤ 𝑎𝑚 ≤

10



1. Dening growth orders

𝐶2𝑎𝑛 for all𝑚 with 𝑛 ≤ 𝑚 ≤ 𝑘𝑛. Thus, we have that

𝑘𝑛∑︁
𝑖=𝑛

𝑎𝑖 ≤ 𝐶2

𝑘𝑛∑︁
𝑖=𝑛

𝑎𝑛 = 𝐶2(𝑘𝑛 − 𝑛 + 1)𝑎𝑛

and this upper bound is, of course, ∼ (𝑛𝑎𝑛). On the other hand, we also have that

𝑘𝑛∑︁
𝑖=𝑛

𝑎𝑖 ≥ 𝐶1

𝑘𝑛∑︁
𝑖=𝑛

𝑎𝑛 = 𝐶1(𝑘𝑛 − 𝑛 + 1)𝑎𝑛

so we also have a lower bound that is ∼ (𝑛𝑎𝑛). Hence, we have that( 𝑘𝑛∑︁
𝑖=𝑛

𝑎𝑖

)
∼ (𝑛𝑎𝑛)

as claimed. �

Simply knowing that a sequence is moderate gives us an easy shortcut for evaluating sums of
the above form - simply multiply them by 𝔫! This allows us to immediately deduce asymptotic
formulas such as the following:

2𝑛∑︁
𝑘=𝑛

log2 𝑘
𝑘

= Θ(log2 𝑛)

...provided, of course, that (log2 𝑛/𝑛) is a moderate sequence.

11



2. Partial ordering

2.1. Definition of the ordering

Denition 5. Let 𝔞, 𝔟 be growth orders. We will say that 𝔞 ≤ 𝔟, or 𝔞 grows at most as
fast as 𝔟, if, for each (𝑎𝑛) ∈ 𝔞 and (𝑏𝑛) ∈ 𝔟, there exists a constant 𝐶 ∈ R+ such that

𝑎𝑛 ≤ 𝐶𝑏𝑛

for all 𝑛 ∈ N. Further, we will say that 𝔞 < 𝔟, or 𝔞 grows slower than 𝔟, if 𝔞 ≤ 𝔟 and
𝔞 ≠ 𝔟.

It is straightforward to show that the above denes a partial ordering on the growth orders over
S(R+).

Proposition 8. The above denes a partial ordering on growth orders in S(R+)/∼.

Proof. We immediately have the reexive property, namely that 𝔞 ≤ 𝔞 for all 𝔞, for if (𝑎𝑛) ∈ 𝔞,
we have that 𝑎𝑛 ≤ 𝐶𝑎𝑛 for all 𝑛 ∈ N when 𝐶 = 1.

To prove transitivity, let 𝔞, 𝔟, 𝔠 be growth orders with 𝔞 ≤ 𝔟 ≤ 𝔠. If (𝑎𝑛) ∈ 𝔞, (𝑏𝑛) ∈ 𝔟, and
(𝑐𝑛) ∈ 𝔠, then there exist constants 𝐶1,𝐶2 such that 𝑎𝑛 ≤ 𝐶1𝑏𝑛 and 𝑏𝑛 ≤ 𝐶2𝑐𝑛 , and therefore
𝑎𝑛 ≤ 𝐶1𝐶2𝑐𝑛 for all 𝑛 ∈ N.

Finally, we shall prove antisymmetry: namely that 𝔞 ≤ 𝔟 and 𝔟 ≤ 𝔞 together imply that 𝔞 = 𝔟.
If both of these inequalities hold, then for all (𝑎𝑛) ∈ 𝔞 and (𝑏𝑛) ∈ 𝔟, there exist constants
𝐶1,𝐶2 ∈ R+ such that 𝑎𝑛 ≤ 𝐶1𝑏𝑛 and 𝑏𝑛 ≤ 𝐶2𝑎𝑛 , meaning that

𝐶−1
1 𝑎𝑛 ≤ 𝑏𝑛 ≤ 𝐶2𝑎𝑛

and therefore (𝑎𝑛) ∼ (𝑏𝑛) and 𝔞 = 𝔟. �

Proposition 9. The following are equivalent to 𝛼 ≤ 𝛽 :
• 𝑎𝑛 = O(𝑏𝑛)
• 𝑎𝑛/𝑏𝑛 is bounded
• 𝑎𝑛/𝑏𝑛 ≤ (1)

Proof. Follows directly from denitions. �

12



2. Partial ordering

2.2. Chains and antichains

This denes a partial ordering on S(R+)/∼, but it is not a total order. That is, trichotomy does
not hold, and there exist growth orders 𝔞 and 𝔟 such that neither 𝔞 ≤ 𝔟 not 𝔟 ≤ 𝔞. For instance,
consider 𝔞 = 1 and 𝔟 = 𝔲.

Denition 6. If 𝔞 � 𝔟 and 𝔟 � 𝔞, then we say that 𝔞 is incomparable to 𝔟, and write
𝔞 ⊥ 𝔟. A chain is a set of growth orders of which any two are comparable, and an
antichain is a set of growth orders of which any two are incomparable.

In the future, we would like to work with chains of growth orders when possible, since it is most
convenient for arithmetic to have any two growth orders be comparable. However, it is harder
than it seems to concisely describe a way of restricting S(R+)/∼ to a subset of growth orders
that is both closed under desirable operations (to be introduced later) while still possessing
trichotomy. Here are a few fairly well-behaved chains of S(R+)/∼:

• The set of polynomial growth orders 𝔫𝑝 with 𝑝 ∈ N, which has order type 𝜔 .

• The set of power-function growth orders 𝔫𝑝 with 𝑝 ∈ R, which has order type _ (the
order type of R).

• The set of growth orders taking the form 𝔫𝑝 𝔩𝑞 = [(𝑛𝑝 log𝑞 𝑛)] with 𝑝, 𝑞 ∈ R. This has
order type _2.

This gives rise to the following question:

Question 1Which ordinal numbers are the order type of some chain of S(R+)/∼? That is,
what is the smallest ordinal that cannot be embedded in S(R+)/∼?

It happens that S(R+)/∼ also has some very large antichains. For instance, consider the family
of growth orders

𝔞𝑝 = 𝑛𝑝 (−1)
𝑛

where 𝑝 ∈ R. We can see that 𝔞𝑝 ⊥ 𝔞𝑞 for all 𝑝 ≠ 𝑞, for the ratio of the terms 𝑛𝑝 (−1)𝑛 and
𝑛𝑞 (−1)

𝑛 will oscillate between very large and very small values. The above observations prove
the following proposition:

Proposition 10. S(R+)/∼ has both uncountable chains and uncountable antichains.

13



3. Arithmetic

3.1. Sums, products and quotients

In this section, we will prove that the elementwise arithmetic operations of +, ·,÷ on sequences
in S(R+) can be extended to growth orders in the obvious way without accidentally introducing
any ill-founded expressions. Let us rst dene these operations on sequences, and then extend
the denition to growth orders:

Denition 7. Given 𝛼 = (𝑎𝑛), 𝛽 = (𝑏𝑛) ∈ S(R+), dene their elementwise sum
𝛼 + 𝛽 = (𝑎𝑛 + 𝑏𝑛), their elementwise product 𝛼 · 𝛽 = (𝑎𝑛𝑏𝑛), and their elementwise
quotient 𝛼/𝛽 = (𝑎𝑛/𝑏𝑛). The elementwise reciprocal of 𝛼 is dened as 𝛼−1 = (𝑎−1𝑛 ).

Proposition 11. If 𝛼, 𝛼 ′ ∈ 𝔞 and 𝛽, 𝛽 ′ ∈ 𝔟, then [𝛼 + 𝛽] = [𝛼 ′ + 𝛽 ′].

Proof. Let 𝛼, 𝛼 ′ ∈ 𝔞 and 𝛽, 𝛽 ′ ∈ 𝔟. Then there exist constants 𝐶1,𝐶2,𝐶3,𝐶4 ∈ R+ such that

𝐶1𝑎𝑛 ≤ 𝑎′𝑛 ≤ 𝐶2𝑎𝑛

𝐶3𝑏𝑛 ≤ 𝑏 ′𝑛 ≤ 𝐶4𝑏𝑛

for all 𝑛 ∈ N. By adding these inequalities, we have that

𝐶1𝑎𝑛 +𝐶3𝑏𝑛 ≤ 𝑎′𝑛 + 𝑏 ′𝑛 ≤ 𝐶2𝑎𝑛 +𝐶4𝑏𝑛

and, since 𝑎𝑛, 𝑏𝑛 are positive integers, we have

min(𝐶1,𝐶3) (𝑎𝑛 + 𝑏𝑛) ≤ 𝑎′𝑛 + 𝑏 ′𝑛 ≤ max(𝐶2,𝐶4) (𝑎𝑛 + 𝑏𝑛)

and therefore 𝛼 + 𝛽 ∼ 𝛼 ′ + 𝛽 ′, proving the claim. �

Proposition 12. If 𝛼, 𝛼 ′ ∈ 𝔞 and 𝛽, 𝛽 ′ ∈ 𝔟, then [𝛼 · 𝛽] = [𝛼 ′ · 𝛽 ′].

Proof. Let 𝛼, 𝛼 ′ ∈ 𝔞 and 𝛽, 𝛽 ′ ∈ 𝔟. Then there exist constants 𝐶1,𝐶2,𝐶3,𝐶4 ∈ R+ such that

𝐶1𝑎𝑛 ≤ 𝑎′𝑛 ≤ 𝐶2𝑎𝑛

𝐶3𝑏𝑛 ≤ 𝑏 ′𝑛 ≤ 𝐶4𝑏𝑛

14
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for all 𝑛 ∈ N. Multiplying these inequalities yields

𝐶1𝐶3𝑎𝑛𝑏𝑛 ≤ 𝑎′𝑛𝑏 ′𝑛 ≤ 𝐶2𝐶4𝑎𝑛𝑏𝑛

so that we immediately have 𝛼 · 𝛽 ∼ 𝛼 ′ · 𝛽 ′. �

Proposition 13. If 𝛼, 𝛼 ′ ∈ 𝔞, we have [𝛼−1] = [𝛼 ′−1].

Proof. Let 𝛼, 𝛼 ′ ∈ 𝔞 so that there exist constants 𝐶1,𝐶2 ∈ R+ such that

𝐶1𝑎𝑛 ≤ 𝑎′𝑛 ≤ 𝐶2𝑎𝑛

for all 𝑛 ∈ N. Inverting these inequalities gives the inequalities

𝐶2
−1𝑎𝑛

−1 ≤ 𝑎′𝑛
−1 ≤ 𝐶1

−1𝑎𝑛
−1

so that 𝛼−1 ∼ 𝛼 ′−1 as desired. �

This means that the growth orders given by [𝛼 + 𝛽], [𝛼 · 𝛽], and [𝛼−1] depend only on the
growth orders of 𝛼 and 𝛽 , and may as well be dened as functions of 𝔞 and 𝔟. This leads to the
next denition:

Denition 8. Given growth orders 𝔞 = [𝛼] and 𝔟 = [𝛽], dene their sum 𝔞 + 𝔟 = [𝛼 + 𝛽],
their product 𝔞 · 𝔟 = [𝛼 · 𝛽], and their quotient 𝔞/𝔟 = [𝛼/𝛽] = [𝛼 · 𝛽−1]. Dene the
reciprocal of the growth order 𝔞 as 𝔞−1 = [𝛼−1] = [1/𝛼].

From the denitions of elementwise addition, products, and quotients, the following familiar
algebraic identities immediately follow:

Proposition 14. For all growth orders 𝔞, 𝔟, 𝔠 we have the following identities:
• 𝔞 + 𝔟 = 𝔟 + 𝔞

• 𝔞 · 𝔟 = 𝔟 · 𝔞
• (𝔞 + 𝔟) + 𝔠 = 𝔞 + (𝔟 + 𝔠)
• (𝔞 · 𝔟) · 𝔠 = 𝔞 · (𝔟 · 𝔠)
• 𝔞 · (𝔟 + 𝔠) = 𝔞 · 𝔟 + 𝔞 · 𝔠
• 𝔞 · 1 = 𝔞

• 𝔞 · 𝔞−1 = 1
• 𝔞 · 𝔟−1 = 𝔞/𝔟

Proof. Trivial. Because the analogues of these identities hold for elements of R+, and these op-
erations are dened elementwise on sequences, their analogues hold in S(R+). Since arithmetic
on growth orders is dene by the arithmetic on their constituent sequences, the above identities
follow. �
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3.2. Preserving moderate growth

In this section we will show briey that these operations preserve the moderate growth property,
so that we may freely take sums and products of moderate growth sequences without worrying
about inadvertently producing immoderate growth sequences.

Proposition 15. If 𝔞, 𝔟 are moderate growth sequences, then 𝔞 + 𝔟 and 𝔞 · 𝔟 and 𝔞−1 are
moderate growth sequences.

Proof. Let 𝔞, 𝔟 be moderate growth sequences, so that for all 𝑘,𝑚, 𝑛 ∈ N with 𝑛 ≤ 𝑚 ≤ 𝑘𝑛, we
have constants 𝐶1,𝐶2,𝐶3,𝐶4 ∈ R+ such that

𝐶1𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶2𝑎𝑛

𝐶3𝑏𝑛 ≤ 𝑏𝑚 ≤ 𝐶4𝑏𝑛

Then we have
min(𝐶1,𝐶3) (𝑎𝑛 + 𝑏𝑛) ≤ 𝑎𝑚 + 𝑏𝑚 ≤ max(𝐶2,𝐶4) (𝑎𝑛 + 𝑏𝑛)

so that 𝔞 + 𝔟 has moderate growth. We also have

𝐶1𝐶3(𝑎𝑛 · 𝑏𝑛) ≤ 𝑎𝑚 · 𝑏𝑚 ≤ 𝐶2𝐶4(𝑎𝑛 · 𝑏𝑛)

so that 𝔞 · 𝔟 has moderate growth, and

𝐶−1
2 𝑎

−1
𝑛 ≤ 𝑎−1𝑚 ≤ 𝐶−1

1 𝑎𝑛

so that 𝔞−1 has moderate growth as well. �

3.3. Subtraction and exponentiation

All of the trouble we’ve gone to in the above sections to dene the simple operations of addition,
multiplication, and division might seem overly pedantic. After all, these operations extend to
growth orders exactly how we’d expect them to, and their properties are more or less what
we’d expect. So why go to all this trouble to show that they’re well-dened? As it happens, not
all operations from real arithmetic extend so nicely to S(R+), and in this section I’ll briey give
two examples: subtraction and exponentiation.

After dening addition on growth orders, it seems a natural next step to attempt a denition
of subtraction. Perhaps we could dene 𝔞 − 𝔟 as the growth order of the sequence (𝑎𝑛 − 𝑏𝑛).
An obvious issue is that the dierence 𝑎𝑛 − 𝑏𝑛 may be negative or zero, and therefore ∉ R+.
However, this could be remedied by considering instead the absolute dierence |𝑎𝑛 − 𝑏𝑛 |, or by
letting 𝔞 − 𝔟 be dened only when 𝔞 > 𝔟.

However, this approach is not viable either. Consider the following three sequences:

16



3. Arithmetic

𝑎𝑛 = 𝑛 + 1
𝑛
+ 1
𝑛2

𝑏𝑛 = 𝑛

𝑏 ′𝑛 = 𝑛 + 1
𝑛

Then we have that (𝑏𝑛) ∼ (𝑏 ′𝑛), while (𝑎𝑛 − 𝑏𝑛) ∼ (1/𝑛) and (𝑎𝑛 − 𝑏 ′𝑛) ∼ (1/𝑛2), which do not
have the same growth order. That illustrates why the growth order of the dierence (𝑎𝑛 − 𝑏𝑛)
does not depend only on the growth orders of (𝑎𝑛) and (𝑏𝑛), and therefore the dierence 𝔞 − 𝔟

cannot be well-dened.

In fact, S(R+)/∼ does not have a cancellation law, so it is impossible in principle to dene an
operation − satisfying (𝔞 + 𝔟) − 𝔟 = 𝔞 - which is something that we would certainly want
subtraction to satisfy if we were to dene it! To be explicit, if 𝔟1, 𝔟2 are two distinct growth
orders both ≤ 𝔞, then we would have 𝔞 + 𝔟1 = 𝔞 + 𝔟2 = 𝔞 (by a property proven in the next
section) and therefore

𝔟1 = (𝔞 + 𝔟1) − 𝔞 = 𝔞 − 𝔞 = (𝔞 + 𝔟2) − 𝔞 = 𝔟2

which is a contradiction! (The interesting question of whether subtraction or additive inverses
could be reasonably extended to S(R+)/∼ was posed by Nic Berkopec.)

Exponentiation is another example: we cannot dene 𝔞𝔟 as the growth order of (𝑎𝑏𝑛𝑛 ), because
this is not uniquely dened by the growth orders of (𝑎𝑛) and (𝑏𝑛). For instance, consider 𝑎𝑛 = 2,
𝑎′𝑛 = 3, 𝑏𝑛 = 𝑛, and 𝑏 ′𝑛 = 2𝑛. Then the sequences (𝑎𝑛𝑏𝑛 ), (𝑎′𝑛𝑏𝑛 ), (𝑎𝑛𝑏

′
𝑛 ), and 𝑎′𝑛𝑏

′
𝑛 , causing the

desired property to fail catastrophically. We have

(𝑎𝑛𝑏𝑛 ) = (2𝑛)
(𝑎′𝑛

𝑏𝑛 ) = (3𝑛)
(𝑎𝑛𝑏

′
𝑛 ) = (4𝑛)

(𝑎′𝑛
𝑏′𝑛 ) = (9𝑛)

so that

(𝑎𝑛𝑏𝑛 ) < (𝑎′𝑛
𝑏𝑛 ) < (𝑎𝑛𝑏

′
𝑛 ) < (𝑎′𝑛

𝑏′𝑛 )

In general, for any growth orders 𝔞, 𝔟 > 1, there are innitely many dierent growth orders
among the sequences (𝑎𝑛𝑏𝑛 ) with (𝑎𝑛) ∈ 𝔞, (𝑏𝑛) ∈ 𝔟.
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3.4. Inequalities

Proposition 16. We have 𝔞 ≤ 𝔟 i 𝔞/𝔟 ≤ 1, and 𝔞 ⊥ 𝔟 i 𝔞/𝔟 ⊥ 1.

Proof. Follows straight from the denitions. Because we are dealing with sequences of positive
real numbers, we have that 𝑎𝑛 ≤ 𝐶𝑏𝑛 i 𝑎𝑛/𝑏𝑛 ≤ 𝐶 · 1, from which 𝔞 ≤ 𝔟 ⇐⇒ 𝔞/𝔟 ≤ 1
immediately follows. Since 𝔞 ⊥ 𝔟 i neither 𝔞 ≤ 𝔟 nor 𝔟 ≤ 𝔞, we have that 𝔞 ⊥ 𝔟 ⇐⇒ 𝔞/𝔟 ⊥ 1
follows immediately. �

Proposition 17. If 𝔞, 𝔟 are comparable, then 𝔞 + 𝔟 = max(𝔞, 𝔟).

Proof. Suppose WLOG that 𝔞 ≥ 𝔟. If 𝛼 = (𝑎𝑛) ∈ 𝔞 and 𝛽 = (𝑏𝑛) ∈ 𝔟, we have that there exists
a constant 𝐶 ∈ R+ such that 𝑎𝑛 ≥ 𝐶𝑏𝑛 for all 𝑛 ∈ N, implying that 𝑎𝑛 ≥ 𝐶

𝐶+1 (𝑎𝑛 + 𝑏𝑛) and
therefore 𝔞 ≥ 𝔞 + 𝔟. On the other hand, we have 𝑎𝑛 ≤ 𝑎𝑛 + 𝑏𝑛 , so 𝔞 ≤ 𝔞 + 𝔟, and therefore
𝔞 = max(𝔞, 𝔟) = 𝔞 + 𝔟. �

This might give the impression that + is a rather trivial operation on growth orders. However,
the above only applies to comparable growth orders: the situation is more complicated (and
interesting!) on incomparable growth orders 𝔞 ⊥ 𝔟.

Proposition 18. The set of growth orders S(R+)/∼ comprises a lattice in which the join
andmeet are respectively dened by

𝔞 ∨ 𝔟 = 𝔞 + 𝔟

𝔞 ∧ 𝔟 = (𝔞−1 + 𝔟−1)−1

so that 𝔞 ∨ 𝔟 is the unique least upper bound of 𝔞, 𝔟, and 𝔞 ∧ 𝔟 is their unique greatest lower
bound.

Proof. First we prove that 𝔞∨𝔟 is the unique least upper bound of 𝔞 and 𝔟. Suppose that 𝔠 ≥ 𝔞, 𝔟,
so that for all (𝑎𝑛) ∈ 𝔞, (𝑏𝑛) ∈ 𝔟, (𝑐𝑛) ∈ 𝔠, we have constants 𝐶1,𝐶2 ∈ R+ such that 𝑎𝑛 ≤ 𝐶1𝑐𝑛
and 𝑏𝑛 ≤ 𝐶2𝑐𝑛 for all 𝑛 ∈ N, and therefore 𝑎𝑛 +𝑏𝑛 ≤ (𝐶1 +𝐶2)𝑐𝑛 , meaning that 𝔞 + 𝔟 ≤ 𝔠. Hence
𝔞 + 𝔟 is a least upper bound for 𝔞, 𝔟 (because any other common upper bound 𝔠 must grow at
least as fast as it does). Uniqueness follows from antisymmetry of ≤: if there were two least
upper bounds 𝔠1, 𝔠2, we would have that 𝔠1 ≤ 𝔠2 and 𝔠2 ≤ 𝔠1, and therefore 𝔠1 = 𝔠2.

To show that 𝔞∧𝔟 is the unique greatest lower bound, notice that 𝔠 is a lower bound for 𝔞, 𝔟 if and
only if 𝔠−1 is an upper bound for 𝔞−1, 𝔟−1 because of the decreasing nature of the function · ↦→ ·−1.
Hence, the greatest-lower-bound property of 𝔞 ∧ 𝔟, as well as its uniqueness, is a corollary of
least-upper-bound property of 𝔞 ∨ 𝔟 combined with the fact that 𝔞 ∨ 𝔟 = (𝔞−1 ∧ 𝔟−1)−1. �
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The above proposition implies that every pair of growth orders has a least upper bound and a
greatest lower bound, and consequently that any nite collection of growth orders has a LUB
and a GLB (which can be formed by repeatedly taking pairwise LUBs and GLBs). A natural
question to ask is whether arbitrary bounded sets of growth orders also have unique least upper
bounds and greatest lower bounds. However, the question of whether least upper bounds exist
in S(R+) can be answered in the negative fairly quickly. Consider, for instance, the chain

𝔫 < 𝔫2 < 𝔫3 < · · ·

and suppose that 𝔞 is an upper bound for the set {𝔫𝑝 }𝑝∈N. No matter the value of 𝔞, there
always exists a smaller upper bound for this chain. For instance, 𝔞/𝔫 will suce: if 𝔞 > 𝔫𝑝 for
all 𝑝 ∈ N, then 𝔞/𝔫 > 𝔫𝑝 for all 𝑝 ∈ N as well, yet 𝔞/𝔫 < 𝔞.

Thus, we cannot even get least upper bounds for increasing sequences of growth orders in
S(R+). A natural follow-up question is whether any strictly increasing sequence of growth
orders has a least upper bound. That is, if we have an increasing sequence of growth orders

𝔞1 < 𝔞2 < 𝔞3 < · · ·

can we always conclude that no upper bound is a least upper bound, as was the case with the
chain 𝔫 < 𝔫2 < · · · ?

Proposition 19. For any strictly increasing sequence of growth orders

𝔞1 < 𝔞2 < 𝔞3 < · · ·

with an upper bound 𝔞′ > 𝔞𝑖 for all 𝑖 ∈ N, then there exists another upper bound 𝔟 with
𝔟 > 𝔞𝑖 for all 𝑖 ∈ N and 𝔟 < 𝔞′.

Proof. Making use of the Axiom of Choice, we may consider some innite sequence of sequences
(𝑎 (𝑖)𝑛 ) ∈ 𝔞𝑖 for 𝑖 ∈ N. Without loss of generalize, we may assume that 𝑎 (𝑖)𝑛 ≤ 𝑎

( 𝑗)
𝑛 for all 𝑖 < 𝑗

and all 𝑛 ∈ N. For if the sequences we choose do not satisfy these inequalities, we may let 𝐶𝑖
be a family of constants such that 𝑎 (𝑖)𝑛 ≤ 𝐶𝑖𝑎

(𝑖+1)
𝑛 for all 𝑛 ∈ N (since 𝔞𝑖 < 𝔞𝑖+1) and replace

the sequences (𝑎 (1)𝑛 ), (𝑎 (2)𝑛 ), (𝑎 (3)𝑛 ), · · · with the sequences (𝑎 (1)𝑛 ), (𝐶1𝑎
(2)
𝑛 ), (𝐶1𝐶2𝑎

(3)
𝑛 ), · · · , which

have the same respective growth orders while satisfying the desired inequalities.

Having chosen a sequence of sequences (𝑎 (𝑖)𝑛 ) with 𝑎 (𝑖)𝑛 ≤ 𝑎
( 𝑗)
𝑛 for all 𝑖 < 𝑗 and 𝑛 ∈ N, let us

now consider an arbitrary sequence (𝑎′𝑛) ∈ 𝔞′. Since 𝔞′ > 𝔞𝑖 for all 𝑖 ∈ N, we have that for
any xed 𝑖 ∈ N, the sequence of ratios 𝑎′𝑛/𝑎

(𝑖)
𝑛 is unbounded above. We may therefore dene

a sequence of indices (𝑚𝑖) as follows: let𝑚1 = 1, and let𝑚𝑖+1 be the smallest natural number
strictly greater than𝑚𝑖 such that 𝑎′𝑚/𝑎

(𝑖)
𝑚 ≥ 𝑖 .

We are now ready to use a "diagonalization" technique to dene a sequence (𝑏𝑛) with an
intermediate growth order. Dene the sequence as follows:
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𝑏𝑛 =

{
𝑎
(𝑖)
𝑛 if 𝑛 =𝑚𝑖 , 𝑖 ∈ N
𝑎′𝑛 else

We can show that if 𝔟 = [(𝑏𝑛)], then 𝔟 < 𝔞′ while 𝔟 > 𝔞𝑖 for all 𝑖 ∈ N. First of all: for any xed
𝑖 ∈ N, we have for all 𝑛 > 𝑚𝑖 that 𝑏𝑛 ≥ 𝑎 (𝑖+1)𝑛 (which can be seen easily by considering the two
cases in the denition of 𝑏𝑛) and therefore 𝔟 ≥ 𝔞𝑖+1 > 𝔞𝑖 . Secondly, we may deduce that 𝔟 < 𝔞′

by considering the ratio 𝑏𝑛/𝑎′𝑛 . For any 𝑛 ∈ N, we either have that 𝑏𝑛/𝑎′𝑛 = 1 (when 𝑛 ≠ 𝑚𝑖

for any 𝑖 ∈ N) or 𝑏𝑛/𝑎′𝑛 ≤ 1/𝑛 (when 𝑛 =𝑚𝑖 , because𝑚𝑖 is dened such that 𝑎 (𝑖)𝑚𝑖
/𝑎′𝑚𝑖

≤ 1/𝑚𝑖 ).
Thus, we have that the sequence (𝑏𝑛/𝑎′𝑛) is bounded above by 1 but comes arbitrarily close to 0,
meaning that 𝔟/𝔞′ < 1 and therefore 𝔟 < 𝔞′. Thus, we have constructed 𝔟 such that

𝔞1 < 𝔞2 < 𝔞3 < · · · < 𝔟 < 𝔞′

as claimed. �

Although we have just proven that no strictly increasing sequence of growth orders in S(R+)
has a least upper bound, it is in fact true that every increasing sequence of growth orders has
some upper bound.

Proposition 20. For any chain of growth orders

𝔞1 ≤ 𝔞2 ≤ 𝔞3 ≤ · · ·

there exists a growth order 𝔞′ such that 𝔞′ ≥ 𝔞𝑖 for all 𝑖 ∈ N.

Proof. We can complete this proof using a diagonalization argument. Let us choose one sequence
from each growth order (𝑎 (𝑖)𝑛 ) ∈ 𝔞𝑖 (making use of the Axiom of Choice). Then we may dene a
sequence (𝑎′𝑛) as follows:

𝑎′𝑛 = sup
1≤𝑖≤𝑛

𝑎
(𝑖)
𝑛

so that 𝑎′𝑛 ≥ 𝑎 (𝑖)𝑛 for all 𝑛 ≥ 𝑖 , for all 𝑖 ∈ N. This means that if 𝔞′ = [(𝑎′𝑛)], we have that 𝔞′ ≥ 𝔞𝑖

for all 𝑖 ∈ N, as desired. �

We have seen that the ordering on S(R+) diers from the ordering on, say, R+ in several key
ways: for one, bounded sequences in R+ always have least upper bounds, which is not true in
this poset; on the other hand, not all sequences in R+ have a upper bound at all, but in this
poset all sequences are bounded.
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4. Summation operators

4.1. Partial summation

In my mind, one of the principal motivations for setting up this whole theory was to address
the following question: given a sequence of known growth order, how can we determine the
growth order of its sequence of partial sums? That is, given a sequence (𝑎𝑛), are there any
general rules or principles allowing us to deduce the growth order of

𝑛∑︁
𝑖=1

𝑎𝑖 ∼ ?

At rst, I was just as interested in nding "quick and dirty" tricks for calculating asymptotic
formulas for sums that appeared, for instance, in computational complexity considerations for
algorithms in computer science. However, I quickly found out that the situation was much
more interesting than I’d expected.

Let’s begin by dening this as an operation on sequences, and showing that it is well-dened as
an operation on growth orders.

Denition 9. Given a sequence 𝛼 = (𝑎𝑛) ∈ S(R+), dene its sequence of partial sums,
denoted Σ𝛼 , as the sequence ( 𝑛∑︁

𝑖=1
𝑎𝑖

)
.

Proposition 21. If 𝛼 ∼ 𝛼 ′, then Σ𝛼 ∼ Σ𝛼 ′.

Proof. Suppose that 𝛼 ∼ 𝛼 ′, so that there exist constants 𝐶1,𝐶2 ∈ R+ such that

𝐶1𝑎𝑛 ≤ 𝑎′𝑛 ≤ 𝐶2𝑎𝑛

for all 𝑛 ∈ N. It follows that

𝐶1

𝑛∑︁
𝑖=1

𝑎𝑖 ≤
𝑛∑︁
𝑖=1

𝑎′𝑛 ≤ 𝐶2

𝑛∑︁
𝑖=1

𝑎𝑖

so that we have Σ𝛼 ∼ Σ𝛼 ′ by denition. �
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4. Summation operators

Therefore, the following denition is justied:

Denition 10. Given a growth order 𝔞 = [𝛼], dene its partial sum to be the growth
order Σ𝔞 = [Σ𝛼].

Here are some elementary properties of this new operation:

Proposition 22. The following facts hold for arbitrary growth orders 𝔞, 𝔟:
• Σ𝔞 ≥ 1
• Σ𝔞 ≥ 𝔞

• 𝔞 ≤ 𝔟 =⇒ Σ𝔞 ≤ Σ𝔟
• Σ(𝔞 + 𝔟) = Σ𝔞 + Σ𝔟

Proof. Trivial. �

Notice that the inequality 𝔞 ≠ 𝔟 does not imply Σ𝔞 ≠ Σ𝔟 in general - that is, Σ is not injective
as a function on growth orders. It is not hard to come up with an example of two incomparable
growth orders 𝔞 ⊥ 𝔟 such that Σ𝔞 = Σ𝔟. For example, consider the sequences 𝔫 and 𝔲, which
are unequal despite the fact that their partial sums have the same growth order Σ𝔫 = Σ𝔲 = 𝔫2.

At this point, we might wonder whether this problem only arises when 𝔞 ⊥ 𝔟. That is, if 𝔞 ≠ 𝔟

and 𝔞, 𝔟 are comparable, then perhaps from this we can deduce that Σ𝔞 ≠ Σ𝔟? Alas, this also
fails to be true. As a counterexample, consider 𝔞 = 1 and 𝔟 dened as the growth order of the
sequence 𝛽 = (𝑏𝑛) dened piecewise as follows:

𝑏𝑛 =

{
𝑘 if 𝑛 = 2𝑘
1 else

In this case, we have 𝔞 < 𝔟 because 𝔟 is bounded below by 1 yet is unbounded, and the entries
of Σ𝛽 are 𝑛 + O(log2 𝑛), meaning that Σ𝔞 = Σ𝔟.

With a bit of eort, we may prove that, by taking partial sums, we will never convert a moderate
growth sequence into a non-moderate sequence. That is, the partial sum operation preserves
moderate growth.

Proposition 23. If 𝔞 is moderate, then Σ𝔞 is moderate.

Proof. Let 𝑘 ∈ N be given. By the moderateness of 𝔞, for any 𝛼 = (𝑎𝑛) ∈ 𝔞, there exist constants
𝐶1,𝐶2 such that for all𝑚 with 𝑛 ≤ 𝑚 ≤ 𝑘𝑛, we have

𝐶1𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶2𝑎𝑛
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4. Summation operators

Now let us x some𝑚,𝑛 ∈ N with 𝑛 ≤ 𝑚 ≤ 𝑘𝑛, and consider the sum
𝑚∑︁
𝑖=1

𝑎𝑖

Because the 𝑎𝑖 are positive and𝑚 ≥ 𝑛, we clearly have that
𝑚∑︁
𝑖=1

𝑎𝑖 ≥
𝑛∑︁
𝑖=1

𝑎𝑖

On the other hand, we have that

𝑚∑︁
𝑖=1

𝑎𝑖 ≤
𝑘𝑛∑︁
𝑖=1

𝑎𝑖

=

𝑛∑︁
𝑖=1

𝑎𝑖 +
𝑛−1∑︁
𝑗=0

𝑘∑︁
𝑖=1

𝑎 𝑗𝑘+𝑖

≤
𝑛∑︁
𝑖=1

𝑎𝑖 +
𝑛−1∑︁
𝑗=0

𝑘∑︁
𝑖=1

𝐶2𝑎 𝑗𝑘+1

Because 𝑗𝑘 + 1 ≤ 𝑗𝑘 + 𝑖 ≤ 𝑘 ( 𝑗𝑘 + 1) for all 𝑘 ∈ N, 𝑗 ∈ N ∪ {0}, and 𝑖 ∈ {1, · · · , 𝑘}. We may
further simplify this upper bound as follows:

𝑚∑︁
𝑖=1

𝑎𝑖 ≤
𝑛∑︁
𝑖=1

𝑎𝑖 +
𝑛−1∑︁
𝑗=0

𝑘𝐶2𝑎 𝑗𝑘+1

≤
𝑛∑︁
𝑖=1

𝑎𝑖 +
𝑛−1∑︁
𝑗=0

𝑘𝐶2
2𝑎 𝑗+1

= (1 + 𝑘𝐶2
2)

𝑛∑︁
𝑖=1

𝑎𝑖

since 𝑗 + 1 ≤ 𝑗𝑘 + 1 ≤ 𝑘 ( 𝑗 + 1) for all 𝑗 ∈ N ∪ {0} and 𝑘 ∈ N. Thus, the sum can be bounded
both above and below as follows:

𝑛∑︁
𝑖=1

𝑎𝑖 ≤
𝑚∑︁
𝑖=1

𝑎𝑖 ≤ (1 + 𝑘𝐶2
2)

𝑛∑︁
𝑖=1

𝑎𝑖

which proves that Σ𝛼 has moderate growth by denition, and that 𝔞 is moderate as claimed. �
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Proposition 24. If 𝔞 is moderate, then Σ𝔞 ≥ 𝔫𝔞.

Proof. Let (𝑎𝑛) ∈ 𝔞 be moderate. From the previous proposition, we have that( 𝑛∑︁
𝑖=1

𝑎𝑖

)
∼

( 2𝑛∑︁
𝑖=1

𝑎𝑖

)
and we may split up this sum as follows:

2𝑛∑︁
𝑖=1

𝑎𝑖 =

𝑛∑︁
𝑖=1

𝑎𝑖 +
2𝑛∑︁

𝑖=𝑛+1
𝑎𝑖

From 7, we have that this is ∼ Σ(𝑎𝑛) + (𝑛𝑎𝑛), which grows at least as fast as (𝑛𝑎𝑛), with growth
order 𝔫𝔞. Thus, we have that Σ𝔞 ≥ 𝔫𝔞 as claimed. �

4.2. Monotone growth orders

Denition 11. We say that a growth order 𝔞 ismonotone if it contains some monotone
sequence 𝛼 = (𝑎𝑛) ∈ 𝔞.

Proposition 25. If 𝔞 is monotone, then it is comparable to 1.

Proof. Suppose that 𝛼 = (𝑎𝑛) ∈ 𝔞 is a monotone sequence. If (𝑎𝑛) is monotone increasing, then
it is bounded below by 𝑎1, and therefore 𝔞 ≥ 1. If it is monotone decreasing, then it is bounded
above by 𝑎1, and we have that 𝔞 ≤ 1. �

A natural question arises from this fact: if all monotone growth orders are comparable to 1,
might it be the case that all monotone growth orders are comparable amongst themselves?
Unfortunately, this is not the case. As a counterexample, consider the growth orders 𝔞 = 𝔫1/2

and 𝔟 dened as the growth order of the sequence 𝛽 = (𝑏𝑛) dened by 𝑏1 = 1 and

𝑏𝑛 = 23blog3 log2 𝑛c = exp2 exp3blog3 log2 𝑛c

for all 𝑛 ≥ 2. Clearly 𝔞 is monotone, and 𝔟 is monotone because each of the functions
exp2, exp3, b·c, log2, log3 is monotone and because 𝑏1 = 1 < 𝑏2 = 2. Notice that when 𝑛 = 23𝑘

for some 𝑘 ∈ N, we have that 𝑏𝑛 = 𝑛, whereas when 𝑛 = 23𝑘−1, we have that 𝑏𝑛 = 𝑛1/3. Hence,
if 𝛼 ∈ 𝔞, then 𝛼/𝛽 is unbounded on the subsequence 𝑛 = 23𝑘−1, and 𝛽/𝛼 is unbounded on the
subsequence 𝑛 = 23𝑘 . This means that 𝔞 ⊥ 𝔟 despite the fact that 𝔞, 𝔟 are both monotone!
Apparently, monotonicity comes with some limited guarantees of comparability, but not all of
the guarantees that we might hope for.

24



4. Summation operators

Monotonicity is a helpful property of sequences because of the above fact, namely that it ensures
comparability to the constant growth order. This is something that our previous "niceness"
condition, namely moderateness, fails to accomplish. For examples, consider the sequence (𝑎𝑛)
dened by

𝑎𝑛 = 𝑛sin log log𝑛

for 𝑛 ≥ 3. Clearly this sequence is incomparable to 1, since it has subsequences tending to 0
and to∞. It is, however, moderate. To see why notice that, whenever 𝑛 ≤ 𝑚 ≤ 𝑘𝑛, we have

| log log𝑚 − log log𝑛 | ≤ | log log𝑘𝑛 − log log𝑛 | ∼ log𝑘
log𝑛

and, since the sine function is Lipschitz continuous, this means that

| log𝑛 𝑎𝑚 − log𝑛 𝑎𝑛 | ≤
𝐾

log𝑛

for some constant 𝐾 ∈ R+ depending only on 𝑘 . This means that 𝑎𝑚/𝑎𝑛 is bounded above by 𝑒𝐾
and below by 𝑒−𝐾 , proving that (𝑎𝑛) is moderate by denition. This shows that moderateness is
not sucient to guarantee comparability to 1, which, hopefully, allows us to appreciate why
monotonicity is useful as a secondary "niceness" condition.

Question 2 What exactly is the growth order of the sum
𝑛∑︁
𝑘=2

𝑘sin log log𝑘 = Θ(?)

In an earlier section, we proved a fundamental property of the partial ordering on S(R+)/∼,
namely that no strictly increasing sequence of growth orders has a least upper bound. That is,
given any sequence of growth orders 𝔞𝑖 with upper bound 𝔞′ such that

𝔞1 < 𝔞2 < 𝔞3 < · · · < 𝔞′

there always exists a growth order 𝔟 which is simultaneously greater than each of the 𝔞𝑖 and
strictly less than 𝔟. Later in this section and future sections, we shall see that when comparing
growth orders, it is often useful to check not only whether they are comparable, but also whether
their quotient is monotone, which gives a great deal of additional useful information. For this
reason, we will now prove a version of the previously mentioned property of the ordering on
S(R+)/∼ that gives a stronger guarantee for increasing sequences of growth orders whose
respective quotients are monotone.

Proposition 26. For any strictly increasing sequence of growth orders

𝔞1 < 𝔞2 < 𝔞3 < · · · < 𝔞′

such that each of the quotients 𝔞𝑖/𝔞 𝑗 and 𝔞′/𝔞𝑖 is monotone, there exists a growth order
𝔟 such that 𝔟 > 𝔞𝑖 for all 𝑖 ∈ N and 𝔟 < 𝔞′, and all of the quotients 𝔟/𝔞𝑖 and 𝔟/𝔞′ are
monotone.
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4. Summation operators

Proof. First of all, notice that it suces to prove this claim for 𝔞′ = 1. For if this seemingly
weaker claim holds, suppose that we are given some growth orders 𝔞𝑖 and 𝔞′ with

𝔞1 < 𝔞2 < 𝔞3 < · · · < 𝔞′

and all pairwise quotients monotone. Consider the chain

𝔞1/𝔞′ < 𝔞2/𝔞′ < 𝔞3/𝔞′ < · · · < 1

If the weaker claim were true, then we would have that there exists a growth order 𝔠 such that

𝔞1/𝔞′ < 𝔞2/𝔞′ < 𝔞3/𝔞′ < · · · < 𝔠 < 1

and such that 𝔠 and all of the quotients 𝔠/(𝔞𝑖/𝔞′) = 𝔠𝔞′/𝔞𝑖 are monotone. But from this it would
follow, by multiplying through by the growth order 𝔞′, that

𝔞1 < 𝔞2 < 𝔞3 < · · · < 𝔠𝔞′ < 𝔞′

with the ratio 𝔞′/(𝔠𝔞′) = 𝔠−1 monotone (because 𝔠 is monotone) and the ratios 𝔠𝔞′/𝔞𝑖 monotone
as explained above. Thus, if we prove the weakened claim for the case of an upper bound of 1,
the more general version will follow immediately.

Suppose, then, that we have some strictly ascending sequence of growth orders

𝔞1 < 𝔞2 < 𝔞3 < · · · < 1

and let (𝑎 (𝑖)𝑛 ) ∈ 𝔞𝑖 be a sequence of monotone decreasing sequences from these growth orders
such that each of the sequences (𝑎 (𝑖)𝑛 /𝑎 ( 𝑗)𝑛 ) is monotone, selected using the Axiom of Choice. We
will now recursively dene another sequence of sequences, each of which is a scalar multiple of
one of the (𝑎 (𝑖)𝑛 ). Let us call these sequences (𝑏 (𝑖)𝑛 ), and dene them as follows. Start by letting
(𝑏 (1)𝑛 ) = (𝑎 (1)𝑛 ). Then dene an increasing sequence of indices (𝑚𝑖) by letting𝑚1 = 1 and𝑚𝑖

be the smallest natural number greater than𝑚𝑖−1 such that 𝑏 (𝑖)𝑛 ≤ 1/𝑖 for 𝑖 > 1. Additionally,
dene a sequence of constants (𝐶𝑖) by letting 𝐶1 = 1 and 𝐶𝑖 = 𝑎 (𝑖)𝑚𝑖−1/𝑏

(𝑖−1)
𝑚𝑖−1 for all 𝑖 > 1. Finally,

dene the sequence (𝑏 (𝑖)𝑛 ) = (𝑎 (𝑖)𝑛 /𝐶𝑖) for each 𝑖 > 1. We my now dene the sequence (𝑏𝑛) in
terms of the sequences (𝑏 (𝑖)𝑛 ) as follows:

𝑏𝑛 =

{
𝑏
(1)
1 if 𝑛 =𝑚1 = 1
𝑏
(𝑖)
𝑛 if𝑚𝑖−1 < 𝑛 ≤ 𝑚𝑖 , 𝑖 > 1

We will now show that (𝑏𝑛) is a monotone decreasing sequence tending to zero, while each of
the sequences (𝑏𝑛/𝑎 (𝑖)𝑛 ) is monotone increasing for all 𝑛 ≥ 𝑚𝑖 . Notice that when 𝑛 = 𝑚𝑖 , we
have that 𝑏 (𝑖)𝑛 = 𝑏

(𝑖+1)
𝑛 . Therefore, since each of the sequences (𝑏 (𝑖)𝑛 ) is monotone decreasing,

and (𝑏𝑛) is dened piecewise as these sequences on successive intervals such that the sequences
have the same value at the points where (𝑏𝑛) "switches" from (𝑏 (𝑖)𝑛 ) to (𝑏 (𝑖+1)𝑛 ), we have that
(𝑏𝑛) is also monotone decreasing. Further, we have that 𝑏𝑚𝑖

≤ 1/𝑖 by the denition of the
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indices (𝑚𝑖), meaning that (𝑏𝑛) also tends to zero. Hence, if 𝔟 is the growth order of (𝑏𝑛), we
have that 𝔟 < 1 with a monotone ratio.

Now, notice that because each (𝑏 (𝑖)𝑛 ) is dened as a scalar multiple of the corresponding (𝑎 (𝑖)𝑛 ),
and the ratios (𝑎 (𝑖+1)𝑛 /𝑎 (𝑖)𝑛 ) are monotone, we have that the ratios (𝑏 (𝑖+1)𝑛 /𝑏 (𝑖)𝑛 ) are also monotone.
Now, if 𝑛 ≥ 𝑚𝑖 for some xed 𝑖 ∈ N, we can see that

𝑏𝑛+1

𝑏
(𝑖)
𝑛+1

≥ 𝑏𝑛

𝑏
(𝑖)
𝑛

because if𝑚 𝑗 ≤ 𝑛 ≤ 𝑚 𝑗+1 for some 𝑗 ≥ 𝑖 , this inequality becomes

𝑏
( 𝑗+1)
𝑛+1

𝑏
(𝑖)
𝑛+1

≥ 𝑏
( 𝑗)
𝑛

𝑏
(𝑖)
𝑛

which follows from the monotone increasing nature of the ratio sequences (𝑏 ( 𝑗)𝑛 /𝑏 (𝑖)𝑛 ) for 𝑗 ≥ 𝑖 .
This means that (𝑏𝑛/𝑏 (𝑖)𝑛 ) is eventually monotone for every xed 𝑖 ∈ N, and since each (𝑏 (𝑖)𝑛 )
has growth order 𝔞𝑖 , we have that 𝔟/𝔞𝑖 is monotone increasing for each 𝑖 ∈ N.

We may therefore conclude that

𝔞1 < 𝔞2 < 𝔞3 < · · · < 𝔟 < 𝔞′

such that each of the ratios 𝔟/𝔞𝑖 and 𝔞′/𝔟 is monotone, proving the claimed existence of such a
growth order 𝔟. �

Now we will begin to explore the relationship between monotonicity of growth orders and the
partial summation operator Σ.

Proposition 27. If 𝔞 > 1, then 𝔞 is monotone if and only if 𝔞 = Σ𝔟 for some other growth
order 𝔟.

Proof. First, suppose 𝔞 is monotone, and that 𝛼 = (𝑎𝑛) ∈ 𝔞 is a monotone sequence. It must be
monotone increasing, since 𝔞 > 1. If we dene the sequence (𝑏𝑛) by letting 𝑏1 = 𝑎1 + 1

2 and

𝑏𝑛+1 = 𝑎𝑛+1 − 𝑎𝑛 +
1
2𝑛

then we have that
𝑛∑︁
𝑖=1

𝑏𝑛 = 𝑎𝑛 + 1 − 1
2𝑛+1

for all 𝑛 ∈ N, and since 𝔞 > 1, we have that the constant term is negligible and Σ𝔟 = 𝔞 as
desired.

The converse is trivial, for if 𝛼 = Σ𝛽 for some sequences 𝛼 = (𝑎𝑛) ∈ 𝔞 and 𝛽 = (𝑏𝑛) ∈ 𝔟, then 𝛼
is monotone because 𝑎𝑛+1 − 𝑎𝑛 = 𝑏𝑛 is strictly positive for all 𝑛 ∈ N. �
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Question 3 If 𝔞 > 1 is both moderate and monotone, is it guaranteed that there exists amoderate
growth order 𝔟 such that 𝔞 = Σ𝔟?

Proposition 28. A growth order 𝔞 is monotone if and only if 𝔞 = 1 or 𝔞 = Σ𝔟 or 𝔞 = (Σ𝔟)−1
for some growth order 𝔟.

Proof. We know from the previous proposition that the growth orders of the form Σ𝔟 are always
monotone, meaning that those in the form (Σ𝔟)−1 are monotone as well. Thus, the "if" direction
is trivial.

On the other hand, if 𝔞 is monotone, we know from a previous proposition that it is comparable
to 1. If 𝔞 ≠ 1, then either 𝔞 > 1, in which case there exists 𝔟 such that 𝔞 = Σ𝔟, or 𝔞 < 1, in
which case 𝔞−1 > 1 and there exists 𝔟 such that 𝔞−1 = Σ𝔟 or 𝔞 = (Σ𝔟)−1. Thus we have proven
the "only if" direction. �

Proposition 29. If 𝔞/𝔟 > 1 is monotone, then Σ𝔞/Σ𝔟 is monotone.

Proof. First notice that, if 𝔞/𝔟 is monotone, then we can choose (𝑎𝑛) ∈ 𝔞, (𝑏𝑛) ∈ 𝔟 such that
𝑎𝑛/𝑏𝑛 is monotone. Specically, if we choose an arbitrary monotone sequence (𝑟𝑛) ∈ 𝔞/𝔟 and
and arbitrary sequence (𝑏𝑛) ∈ 𝔟, then dening (𝑎𝑛) ∈ 𝔞 by the equation 𝑎𝑛 = 𝑟𝑛𝑏𝑛 accomplishes
this, ensuring that (𝑎𝑛/𝑏𝑛) = (𝑟𝑛𝑏𝑛/𝑏𝑛) = (𝑟𝑛) is monotone.

Now we will make use of the inequality

𝑥

𝑦
≤ 𝑥 + 𝑥 ′
𝑦 + 𝑦 ′ ≤ 𝑥 ′

𝑦 ′

which applies to all 𝑥, 𝑥 ′, 𝑦,𝑦 ′ ∈ R+ with 𝑥 ′/𝑦 ′ ≥ 𝑥/𝑦. Consider the following inequality:

𝑎𝑛+1
𝑏𝑛+1

≥
∑𝑛
𝑖=1 𝑎𝑖∑𝑛
𝑖=1 𝑏𝑖

clearly this is true for 𝑛 = 1 by the monotonicity of 𝑎𝑛/𝑏𝑛 , so 𝑛 = 1 will serve as our base case.
Now suppose that this inequality holds for some 𝑛 ∈ N, and for all preceding values. By the
inequality mentioned at the beginning of the proof and the monotonicity of 𝑎𝑛/𝑏𝑛 , we have that

𝑎𝑛+2
𝑏𝑛+2

≥ 𝑎𝑛+1
𝑏𝑛+1

≥
∑𝑛+1
𝑖=1 𝑎𝑖∑𝑛+1
𝑖=1 𝑏𝑖

≥
∑𝑛
𝑖=1 𝑎𝑖∑𝑛
𝑖=1 𝑏𝑖

This inequality establishes both of the following inequalities:∑𝑛+1
𝑖=1 𝑎𝑖∑𝑛+1
𝑖=1 𝑏𝑖

≥
∑𝑛
𝑖=1 𝑎𝑖∑𝑛
𝑖=1 𝑏𝑖
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𝑎𝑛+2
𝑏𝑛+2

≥
∑𝑛+1
𝑖=1 𝑎𝑖∑𝑛+1
𝑖=1 𝑏𝑖

the former of which proves that the sequence Σ𝛼/Σ𝛽 is monotonic up to index 𝑛 + 1, and
the latter of which extends our original assumption from case 𝑛 to case 𝑛 + 1, allowing us to
inductively prove our claim for all 𝑛 ∈ N. �

Proposition 30. If 𝔞/𝔟 > 1 is monotone and Σ𝔞 > 1, then Σ𝔞/Σ𝔟 > 1.

Proof. We may use the same construction as in the previous proof to choose (𝑎𝑛) ∈ 𝔞 and
(𝑏𝑛) ∈ 𝔟 such that 𝛼/𝛽 is monotone. Letting 𝑅 ∈ R+ be arbitrary, we will show that Σ𝛼/Σ𝛽
eventually exceeds 𝑅, and is therefore unbounded.

Because 𝛼/𝛽 is monotone and > 1, there exists 𝑁 ∈ N such that 𝑎𝑛/𝑏𝑛 > 2𝑅 for all 𝑛 ≥ 𝑁 .
Furthermore, since Σ𝔞 > 1, we have that Σ𝔞 is unbounded, and there therefore exists 𝑀 ∈ N
such that

𝑀∑︁
𝑖=𝑁

𝑎𝑖 ≥ 2𝑅
𝑁−1∑︁
𝑖=1

𝑏𝑖

Then we have the following inequality:∑𝐾
𝑖=1 𝑎𝑖∑𝐾
𝑖=1 𝑏𝑖

=

∑𝑁−1
𝑖=1 𝑎𝑖 +

∑𝐾
𝑖=𝑁 𝑎𝑖∑𝑁−1

𝑖=1 𝑏𝑖 +
∑𝐾
𝑖=𝑁 𝑏𝑖

>

∑𝐾
𝑖=𝑁 𝑎𝑖∑𝑁−1

𝑖=1 𝑏𝑖 +
∑𝐾
𝑖=𝑁 𝑏𝑖

Now notice that the numerator of this ratio is greater than or equal to 𝑅 times the denominator,
since it is greater than or equal to 2𝑅 times each of the sums in the denominator. Thus, we have
that ∑𝐾

𝑖=1 𝑎𝑖∑𝐾
𝑖=1 𝑏𝑖

> 𝑅

and, since Σ𝛼/Σ𝛽 is monotone by the previous proposition, we have that all elements of Σ𝛼/Σ𝛽
with 𝑛 ≥ 𝐾 exceed 𝑅. Hence, Σ𝛼/Σ𝛽 is unbounded above (since 𝑅 was arbitrary) and therefore
> 1, since it is monotone. �

Recall that, in the rst section of this chapter, we found a troublesome counterexample in which
Σ failed to preserve strict inequality of sequences. Using the two propositions above, we are now
prepared to "salvage" this idea by providing sucient conditions for 𝔞 < 𝔟 to imply Σ𝔞 < Σ𝔟.

Proposition 31. If 𝔞/𝔟 is monotone and Σ𝔟 > 1, then 𝔞 < 𝔟 =⇒ Σ𝔞 < Σ𝔟.

Proof. This follows easily from the above two propositions. If 𝔞 < 𝔟, then 𝔟/𝔞 is monotone
(since 𝔞/𝔟 is monotone by hypothesis) and it is also > 1. By the previous two propositions,
since Σ𝔟 > 1, we have that Σ𝔟/Σ𝔞 > 1 and therefore Σ𝔞 < Σ𝔟 as claimed. �

Question 4 Is Σ injective on moderate growth orders? Do there exist two moderate growth
orders 𝔞 ≠ 𝔟 such that Σ𝔞 = Σ𝔟?
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4.3. The partial sum ratio

There are several asymptotic formulas for partial sums that are familiar from calculus. For
instance:

Σ𝔫𝑝 = 𝔫𝑝+1

Σ𝔫𝑝 𝔩𝑞 = 𝔫𝑝+1𝔩𝑞

Σ𝔫−1 = 𝔩

Σ𝔫−1𝔩𝑝 = 𝔩𝑝+1

Σ(𝔫𝔩)−1 = [(log log𝑛)]

for 𝑝 ∈ (−1,∞) and 𝑞 ∈ R. If we look for patterns or tricks that might allow us to quickly
calculate the asymptotics of a sequence of partial sums, the rst thing that pops out is that, for
a broad class of growth orders, taking partial sums amounts to just multiplying the original
growth order by 𝔫. This is the case for the rst two classes of growth orders: Σ sends 𝔫𝑝 to
𝔫 · 𝔫𝑝 = 𝔫𝑝+1 and sends 𝔫𝑝 𝔩𝑞 to 𝔫 · 𝔫𝑝 𝔩𝑞 = 𝔫𝑝+1𝔩𝑞 . However, for the growth order 𝔫−1, taking
partial sums increases the original growth order by a factor of 𝔫𝔩, rather than 𝔫. And for the
growth order (𝔫𝔩)−1, taking partial sums increases it by a factor of [(𝑛 log𝑛 log log𝑛)].

While these examples don’t suggest any obvious catch-all technique for determining the growth
order of Σ𝔞 in general (despite some noticeable patterns for special cases like 𝔫𝑝 𝔩𝑞), they do
hint that it may be informative to study the factor by which a growth order increases when we
take its partial sums. That is, we should take a closer look not just at the Σ function, but at the
function which sends 𝔞 → 𝔞/Σ𝔞. Let us denote this partial sum ratio 𝔞/Σ𝔞 using the notation
P𝔞. From our observations above, we know, for instance, that P𝔞 = 𝔫−1 when 𝔞 takes the form
𝔫𝑝 𝔩𝑞 with 𝑝 > −1, and that P𝔞 = (𝔫𝔩)−1 when 𝔞 takes the form 𝔫−1𝔩𝑝 with 𝑝 > −1. It seems that
P is constant for large intervals of growth orders.

Nevertheless, the above proposition shows that for sequences with monotone ratios, the partial
sum ratio P preserves their order. Clearly this transformation is not necessarily strictly order-
preserving on such sequences, because, as we saw earlier, it maps many dierent growth orders
to the same ratio.

Proposition 32. If 𝔞 ≤ 𝔟 and 𝔞/𝔟 is monotone, then P𝔞 ≤ P𝔟.

Proof. Suppose 𝔞 ≤ 𝔟 and 𝔞/𝔟 is monotone, so that there exists a monotone decreasing sequence
(𝑐𝑛) ∈ 𝔞/𝔟, and we may choose (𝑎𝑛) ∈ 𝔞, (𝑏𝑛) ∈ 𝔟 such that 𝑎𝑛/𝑏𝑛 = 𝑐𝑛 . (Let (𝑏𝑛) be an arbitrary
element of 𝔟 and let (𝑎𝑛) be dened by 𝑎𝑛 = 𝑏𝑛𝑐𝑛 .) Then we have that

𝑐𝑛

𝑛∑︁
𝑘=1

𝑏𝑘 =

𝑛∑︁
𝑘=1

𝑐𝑛𝑏𝑘 ≤
𝑛∑︁
𝑘=1

𝑐𝑘𝑏𝑘 =

𝑛∑︁
𝑘=1

𝑎𝑘

so we have that (𝔞/𝔟)Σ𝔟 ≤ Σ𝔞, which is equivalent to P𝔞 ≤ P𝔟. �
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The implication 𝔞 ≤ 𝔟 =⇒ P𝔞 ≤ P𝔟 seems to suggest that P is a monotone increasing
function on growth orders. However, the additional stipulation that 𝔞/𝔟 be monotone is
essential. Consider the two growth orders 𝔫−1/2 and 𝔲1/3, which satisfy 𝔫−1/2 < 𝔲1/3. We
also have Σ𝔫1/2 = 𝔫3/2 and Σ𝔲1/3 = 𝔫4/3, so that P𝔫−1/2 = 𝔫−1 and P𝔲1/3 = 𝔲1/3𝔫−4/3, so that
P𝔲1/3 < P𝔫−1/2. Thus, not only does P fail to be monotone increasing in general, but it actually
reverses the order of some growth orders, such as 𝔫−1/2 < 𝔲1/3 with P𝔲1/3 < P𝔫−1/2.

Proposition 33. For any moderate growth order 𝔞 with (𝑎𝑛) ∈ 𝔞, we have that ΣP𝔞 is the
growth order of the sequence (𝑏𝑛) dened by

𝑏𝑛 = log
(
1 +

𝑛∑︁
𝑖=1

𝑎𝑖

)
Proof. From the above denition of 𝑏𝑛 , we have

𝑏𝑛+1 − 𝑏𝑛 = log
(
1 +

𝑛+1∑︁
𝑖=1

𝑎𝑖

)
− log

(
1 +

𝑛∑︁
𝑖=1

𝑎𝑖

)
= log

(
1 + 𝑎𝑛+1∑𝑛

𝑖=1 𝑎𝑖

)
and by 24 we have that the ratio inside of the logarithm on the RHS decays at least as fast as
𝔫−1. We know from analysis that log(1 + ℎ) is Θ(ℎ) as ℎ → 0, so we have that

𝑏𝑛+1 − 𝑏𝑛 ∼ 𝑎𝑛+1∑𝑛
𝑖=1 𝑎𝑖

The sequence with terms given by the RHS of this asymptotic equivalence has growth order
𝔞/Σ𝔞 (because 𝔞 is moderate). The partial sums of the RHS yield the original sequence (𝑏𝑛), so
we have that Σ(𝔞/Σ𝔞), or ΣP𝔞, is the growth order of (𝑏𝑛), as claimed. �

We can also prove the following similar formula, which can be thought of as an analogue of the
power rule from calculus:

Proposition 34. For any moderate growth order 𝔞 with (𝑎𝑛) ∈ 𝔞, and for any 𝑝 > −1, we
have that Σ(𝔞(Σ𝔞)𝑝) = (Σ𝔞)𝑝+1, and for any 𝑝 < −1, we have Σ(𝔞(Σ𝔞)𝑝) = 1.

Proof. Let 𝑝 > −1, and dene a sequence (𝑏𝑛) as follows:

𝑏𝑛 =

( 𝑛∑︁
𝑖=1

𝑎𝑖

)𝑝+1
Using the same technique as the previous proof, we have that

𝑏𝑛+1 − 𝑏𝑛 =

(
𝑎𝑛+1 +

𝑛∑︁
𝑖=1

𝑎𝑖

)𝑝+1
−

( 𝑛∑︁
𝑖=1

𝑎𝑖

)𝑝+1
=

( 𝑛∑︁
𝑖=1

𝑎𝑖

)𝑝+1 ((
1 + 𝑎𝑛+1∑𝑛

𝑖=1 𝑎𝑖

)𝑝+1
− 1

)
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Now recall from calculus that (1 + ℎ)𝑝+1 − 1 is Θ(ℎ) as ℎ → 0, meaning that

𝑏𝑛+1 − 𝑏𝑛 ∼
( 𝑛∑︁
𝑖=1

𝑎𝑖

)𝑝+1
· 𝑎𝑛+1∑𝑛

𝑖=1 𝑎𝑖
= 𝑎𝑛+1

( 𝑛∑︁
𝑖=1

𝑎𝑖

)𝑝
which has a growth order of 𝔞(Σ𝔞)𝑝 , since 𝑎𝑛+1 ∼ 𝑎𝑛 (because 𝔞 is moderate). The partial sums
of the LHS yield the sequence (𝑏𝑛+1 − 𝑏1) ∼ (𝑏𝑛), meaning that 𝔟 = (Σ𝔞)𝑝+1 = Σ(𝔞(Σ𝔞)𝑝), as
claimed.

Suppose, on the other hand, that 𝑝 < −1. Because 𝔞 is moderate, we have that Σ𝔞 ≥ 𝔫𝔞, and
therefore 𝔞(Σ𝔞)𝑝 ≤ 𝔫𝑝 . Since Σ𝔫𝑝 = 1, we have that Σ(𝔞(Σ𝔞)𝑝) = 1 as well. �

Proposition 35. If 𝛼 = (𝑎𝑛) ∈ 𝔞 is a sequence tending to zero, and the sequence 𝛽 = 𝑒Σ𝛼

has growth order 𝔟, then Σ(𝔞𝔟) = 𝔟.

Proof. The equation 𝛽 = (𝑏𝑛) = 𝑒Σ𝛼 simply means that

𝑏𝑛 = 𝑒
∑𝑛

𝑘=1 𝑎𝑘

Now, notice that
𝑏𝑛 − 𝑏𝑛−1 = 𝑒

∑𝑛
𝑘=1 𝑎𝑘 − 𝑒

∑𝑛−1
𝑘=1 𝑎𝑘 = 𝑒

∑𝑛
𝑘=1 𝑎𝑘 (1 − 𝑒−𝑎𝑛 )

Because 1 − 𝑒−ℎ = Θ(ℎ) as ℎ → 0, and (𝑎𝑛) is a sequence tending to zero, we have that the
sequence (1 − 𝑒−𝑎𝑛 ) has the same growth order 𝔞 as (𝑎𝑛), and therefore that the dierence
𝑏𝑛 − 𝑏𝑛−1 has growth order 𝔞𝔟. However, the partial sums of the sequence 𝑏𝑛 − 𝑏𝑛−1 are simply
equal to 𝑏𝑛 plus O(1), and the O(1) term can be neglected, since we already know that (𝑏𝑛)
is Ω(1) (since 𝑒𝑎𝑛 is bounded below by 1 for 𝑎𝑛 > 0). Hence, we have that Σ(𝔞𝔟) = 𝔟 as
claimed. �

4.4. Convolution

Denition 12. Given sequences 𝛼, 𝛽 ∈ S(R+), their convolution 𝛼 ∗ 𝛽 is dened as the
sequence (𝑐𝑛) with entries given by

𝑐𝑛 =

𝑛∑︁
𝑘=1

𝑎𝑘𝑏𝑛−𝑘+1

Proposition 36. If 𝛼, 𝛼 ′, 𝛽 ∈ S(R+) and 𝛼 ∼ 𝛼 ′, then 𝛼 ∗ 𝛽 ∼ 𝛼 ′ ∗ 𝛽 .
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Proof. Suppose that 𝛼 ∼ 𝛼 ′ so that there exist constants 𝐶1,𝐶2 such that

𝐶1𝑎
′
𝑛 ≤ 𝑎𝑛 ≤ 𝐶2𝑎

′
𝑛

for all 𝑛 ∈ N. This implies that

𝐶1

𝑛∑︁
𝑘=1

𝑎′
𝑘
𝑏𝑛−𝑘+1 ≤

𝑛∑︁
𝑘=1

𝑎𝑘𝑏𝑛−𝑘+1 ≤ 𝐶2

𝑛∑︁
𝑘=1

𝑎′
𝑘
𝑏𝑛−𝑘+1

and therefore 𝛼 ∗ 𝛽 ∼ 𝛼 ′ ∗ 𝛽 by the denition of convolution. �

Following the same pattern as before, this allows us to extend sequence convolution to a
well-dene operation on growth orders.

Denition 13. If 𝔞, 𝔟 ∈ S(R+)/∼ are growth orders, dene their convolution 𝔞 ∗ 𝔟 as
the growth order of the sequence 𝛼 ∗ 𝛽 , where 𝛼 ∈ 𝔞, 𝛽 ∈ 𝔟 are arbitrary.

Here are some basic properties of convolution:

Proposition 37. The following identities hold for all growth orders 𝔞, 𝔟, 𝔠:
• 𝔞 ∗ 𝔟 = 𝔟 ∗ 𝔞
• 𝔞 ∗ (𝔟 ∗ 𝔠) = (𝔞 ∗ 𝔟) ∗ 𝔠
• 𝔞 ∗ (𝔟 + 𝔠) = (𝔞 ∗ 𝔟) + (𝔞 ∗ 𝔠)
• 𝔞 ∗ 1 = Σ𝔞

Proof. We will show that these identities hold for all growth orders by showing that they hold
for any of their constituent sequences. Let (𝑎𝑛) ∈ 𝔞, (𝑏𝑛) ∈ 𝔟, (𝑐𝑛) ∈ 𝔠 be arbitrary.

First of all, we have that
𝑛∑︁
𝑘=1

𝑎𝑘𝑏𝑛−𝑘+1 =
𝑛∑︁
𝑘=1

𝑎𝑛−𝑘+1𝑏𝑘

by reindexing the sum, meaning that we have (𝑎𝑛) ∗ (𝑏𝑛) = (𝑏𝑛) ∗ (𝑎𝑛) and therefore 𝔞 ∗𝔟 = 𝔟∗𝔞.

For the second identity, we will make use of the following reformulation of the denition of
convolution:

(𝛼 ∗ 𝛽)𝑛 =
∑︁

𝑖+𝑗=𝑛+1
𝑎𝑖𝑏 𝑗
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where the sum ranges over positive integers 𝑖, 𝑗 . This means that

((𝛼 ∗ 𝛽) ∗ 𝛾)𝑛 =
∑︁

𝑖+𝑗=𝑛+1

∑︁
𝑘+𝑙=𝑖+1

𝑎𝑘𝑏𝑙𝑐 𝑗

=
∑︁

𝑘+𝑙+𝑗=𝑛+2
𝑎𝑘𝑏𝑙𝑐 𝑗

=
∑︁

𝑘+𝑖=𝑛+1

∑︁
𝑙+𝑗=𝑖+1

𝑎𝑘𝑏𝑙𝑐 𝑗

= (𝛼 ∗ (𝛽 ∗ 𝛾))𝑛

and therefore we have that (𝔞 ∗ 𝔟) ∗ 𝔠 = 𝔞 ∗ (𝔟 ∗ 𝔠).

For the next identity, we may simply use the fact that
𝑛∑︁
𝑘=1

𝑎𝑘 (𝑏𝑛−𝑘+1 + 𝑐𝑛−𝑘+1) =
𝑛∑︁
𝑘=1

𝑎𝑘𝑏𝑛−𝑘+1 +
𝑛∑︁
𝑘=1

𝑎𝑘𝑐𝑛−𝑘+1

which proves that 𝔞 ∗ (𝔟 + 𝔠) = (𝔞 ∗ 𝔟) + (𝔞 ∗ 𝔠).

Finally, for the last identity, we may use the constant sequence (1) ∈ 1, which gives the following
formula for the 𝑛th term of the convolution (𝑎𝑛) ∗ (1):

𝑛∑︁
𝑘=1

𝑎𝑘 · 1

which is simply the 𝑛th partial sum of (𝑎𝑛), meaning that 𝔞 ∗ 1 = Σ𝔞 as claimed. �

4.5. The convergence-divergence boundary

A natural question to ask while exploring convergent and divergent innite series is the follow-
ing: does there exist a growth order which exhibits the slowest possible decay for a sequence
whose partial sums diverge? That is, does there exist a minimal growth order whose partial
sums diverge?

Proposition 38. For any growth order 𝔞 with Σ𝔞 > 1, there exists a growth order 𝔟 < 𝔞

with Σ𝔟 > 1.

Proof. Let us suppose that 𝔞 < 1, or that 𝔞 is the growth order of a sequence tending to zero.
For if this is not the case, we may simply let 𝔟 = 𝔫−1. If (𝑎𝑛) ∈ 𝔞 tends to zero but Σ𝔞 > 1, then
consider the sequence (𝑏𝑛) dened by 𝑏1 =

√
𝑎1 and

𝑏𝑛 =

√√
𝑛∑︁
𝑖=1

𝑎𝑖 −

√√√
𝑛−1∑︁
𝑖=1

𝑎𝑖
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so that
𝑛∑︁
𝑖=1

𝑏𝑖 =

√√
𝑛∑︁
𝑖=1

𝑎𝑖

Now let 𝔟 be the growth order of this sequence. Clearly, since the partial sums of (𝑎𝑛) tend to
innity, the partial sums of (𝑏𝑛) also tend to innity, since 𝑥 ↦→

√
𝑥 is an unbounded strictly

increasing function on R+. We also have that

𝑏𝑛 =

(√√√
𝑛−1∑︁
𝑖=1

𝑎𝑖

) (√︂
1 + 𝑎𝑛∑𝑛−1

𝑖=1 𝑎𝑖
− 1

)

∼
(√√√

𝑛−1∑︁
𝑖=1

𝑎𝑖

)
· 12

𝑎𝑛∑𝑛−1
𝑖=1 𝑎𝑖

=
𝑎𝑛

2
√︃∑𝑛−1

𝑖=1 𝑎𝑖

which has growth order 𝔞/
√
Σ𝔞, which is strictly less than 𝔞, since Σ𝔞 > 1. Thus, we have found

a growth order 𝔟 such that Σ𝔟 > 1 and 𝔟 < 𝔞. �

This allows us to answer our question in the negative. There can be no "slowest diverging"
innite series, because for any growth order whose partial sums diverge, there exists a strictly
lesser growth order whose partial sums also diverge. This means that for any growth order
with divergent partial sums, we can, in fact, construct a strictly decreasing innite sequence of
growth orders starting with the given growth order, each of whose partial sums diverges. The
following growth orders are familiar ones from calculus:

· · · < (𝔫𝔩𝔩2𝔩3)−1 < (𝔫𝔩𝔩2)−1 < (𝔫𝔩)−1 < 𝔫−1

where the partial sums of the sequence (𝔫𝔩 · · · 𝔩𝑚)−1 diverge with a growth order of 𝔩𝑚+1. This
provokes another question. Sure, we know that there is no least diverging growth order, but
maybe some sequence of growth orders like the above "covers" all growth orders whose partial
sums diverge. For instance, perhaps we can say that every growth order 𝔞 whose partial sums
diverge falls above some growth order from the above list, so that no growth order diverges
more slowly than all of the growth orders (𝔫𝔩 · · · 𝔩𝑚)−1. Is this true?

Proposition 39. Given any innite descending sequence of growth orders

· · · < 𝔞3 < 𝔞2 < 𝔞1

such that Σ𝔞𝑖 > 1 for all 𝑖 ∈ N, there always exists some growth order 𝔠 such that 𝔠 < 𝔞𝑖

for all 𝑖 ∈ N and yet Σ𝔠 > 1.
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Proof. Let’s start by choosing innitely many sequences (𝑎 (𝑖)𝑛 ) ∈ 𝔞𝑖 from the given sequence of
growth orders. Because 𝔞𝑖+1 < 𝔞𝑖 for each 𝑖 ∈ N, there exists some sequence of constants 𝐶𝑖
such that

𝑎
(𝑖+1)
𝑛

𝑎
(𝑖)
𝑛

≤ 𝐶𝑖

for all 𝑛 ∈ N, for each 𝑖 ∈ N. This inequality implies that

𝑎
(𝑖+1)
𝑛

𝑎
( 𝑗)
𝑛

≤ 𝐶𝑖𝐶𝑖−1 · · ·𝐶 𝑗

for all 𝑛 ∈ N, for all 𝑗 ≤ 𝑖 . Denote the constant 𝐶𝑖𝐶𝑖−1 · · ·𝐶 𝑗 by 𝐵𝑖, 𝑗 .

Let us now dene another class of sequences (𝑏 (𝑖)𝑛 ) as follows: set (𝑏 (1)𝑛 ) = (𝑎 (1)𝑛 ), and

𝑏
(𝑖+1)
𝑛 =

𝑎
(𝑖+1)
𝑛

max(𝐵𝑖,1, 𝐵𝑖,2, · · · , 𝐵𝑖,𝑖)

so that we have 𝑏 (𝑖)𝑛 ≤ 𝑏 ( 𝑗)𝑛 for all 𝑛 ∈ N and 𝑗 ≤ 𝑖 . In essence, we have normalized the sequences
(𝑎 (𝑖)𝑛 ) so that each sequence (𝑏 (𝑖)𝑛 ) has the same growth order of 𝔞𝑖 for a xed value of 𝑖 , but
𝑏
(𝑖)
𝑛 is a decreasing function of 𝑖 . In other words, if we arrange these sequences in a table:

𝑏
(1)
1 𝑏

(1)
2 𝑏

(1)
3 · · · 𝑏

(1)
𝑛 · · ·

𝑏
(2)
1 𝑏

(2)
2 𝑏

(2)
3 · · · 𝑏

(2)
𝑛 · · ·

𝑏
(3)
1 𝑏

(3)
2 𝑏

(3)
3 · · · 𝑏

(3)
𝑛 · · ·

· · · · · · · · · · · · · · · · · ·
𝑏
(𝑖)
1 𝑏

(𝑖)
2 𝑏

(𝑖)
3 · · · 𝑏

(𝑖)
𝑛 · · ·

then the sequence along row 𝑖 has growth order 𝔞𝑖 , and the sequence down column𝑛 is monotone
decreasing.

Since each sequence 𝑏 (𝑖)𝑛 diverges, for any given𝑀 ∈ R+, there exists some index𝑚 such that
the sum of the rst 𝑚 terms of the sequence exceeds 𝑀 . Therefore, we may dene a more
general function ind𝑀 (𝑖) as follows: let ind𝑀 (𝑖) be the smallest value of𝑚 such that the sum of
the rst𝑚 terms of the sequence (𝑏 (𝑖)𝑛 ) exceeds𝑀 . Notice that ind𝑀 (𝑖) ≤ ind𝑀 ( 𝑗) when 𝑖 ≤ 𝑗 ,
since 𝑏 (𝑖)𝑛 ≥ 𝑏 ( 𝑗)𝑛 for 𝑖 ≤ 𝑗 . Informally, for sequences on lower rows of the table, it takes their
partial sums longer to reach large values.

Finally, let’s dene a new sequence (𝑐𝑛), which will in some sense "diagonalize" over the above
family of sequences. Dene 𝑐𝑛 piecewise as follows:

𝑐𝑛 =

{
𝑏
(1)
𝑛 if 𝑛 ≤ ind1(1)
𝑏
(𝑖+1)
𝑛 when ind𝑖 (𝑖) < 𝑛 ≤ ind𝑖+1(𝑖 + 1)
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notice that these cases well-dene 𝑐𝑛 because ind𝑖 (𝑖) is a monotone increasing sequence of 𝑖 , and
therefore every 𝑛 ≥ ind𝑖 (𝑖) falls in the interval of integers (ind𝑖 (𝑖), ind𝑖+1(𝑖 + 1)] for exactly one
value of 𝑖 ∈ N. (Some of these intervals are empty, namely the ones where ind𝑖 (𝑖) = ind𝑖+1(𝑖+1).)
At this point we just need to show that (𝑐𝑛) satises the desired properties of having growth
order less than each 𝔞𝑖 , and having divergent partial sums.

First of all, notice that for all 𝑛 > ind𝑖 (𝑖), we have that 𝑐𝑛 ≤ 𝑏 (𝑖)𝑛 , since for these values of 𝑛 we
will have 𝑐𝑛 = 𝑏

( 𝑗)
𝑛 for some values 𝑗 > 𝑖 , and we have already shown that 𝑏 ( 𝑗)𝑛 ≤ 𝑏 (𝑖)𝑛 for 𝑗 ≥ 𝑖 .

Thus, since 𝑐𝑛 is bounded above by 𝑏 (𝑖)𝑛 for all but nitely many values of 𝑛. This means that,
if 𝔠 = [(𝑐𝑛)], we have 𝔠 ≤ 𝔞𝑖 for each 𝑖 , and hence 𝔠 ≤ 𝔞𝑖+1 < 𝔞𝑖 and 𝔠 < 𝔞𝑖 for each 𝑖 ∈ N, as
claimed.

Finally, consider the sum of the rst ind𝑖 (𝑖) values of 𝑐𝑛 . For each 𝑛 ≤ ind𝑖 (𝑖), we have that
𝑐𝑛 = 𝑏

( 𝑗)
𝑛 for some 𝑗 < 𝑖 , meaning that 𝑐𝑛 ≥ 𝑏 (𝑖)𝑛 for each 𝑛 ≤ ind𝑖 (𝑖). But, by the denition of

ind𝑖 (𝑖), we have that the sum𝑏 (𝑖)1 +· · ·+𝑏 (𝑖)ind𝑖 (𝑖) ≥ 𝑖 , meaning that we also have 𝑐1+· · ·+𝑐ind𝑖 (𝑖) ≥ 𝑖 .
Thus, the partial sums of (𝑐𝑛) are unbounded, and Σ𝔠 > 1, as desired. �

Again, our question is answered negatively. Given any descending sequence of growth orders
with divergent partial sums, there exists a growth orders with partial sums that diverge even
more slowly.

What does this look like in terms of the familiar sequence of growth orders

· · · < (𝔫𝔩𝔩2𝔩3)−1 < (𝔫𝔩𝔩2)−1 < (𝔫𝔩)−1 < 𝔫−1

mentioned earlier? Well, let’s repeat the construction for this family of growth orders. Our
family of sequences (𝑎 (𝑖)𝑛 ) can be given as follows:

𝑎
(1)
𝑛 = 𝑛−1

𝑎
(2)
𝑛 = 𝑛−1(1 + log2 𝑛)−1

𝑎
(3)
𝑛 = 𝑛−1(1 + log2 𝑛)−1

(
1 + log2(1 + log2 𝑛)

)−1
· · ·

For these sequences, we already have 𝑎 ( 𝑗)𝑛 ≤ 𝑎 (𝑖)𝑛 for all 𝑖 ≤ 𝑗 , so we don’t even need to bother
with normalizing our sequences. The partial sums of 𝑎 (𝑖)𝑛 are on the order 𝔩𝑖 , meaning that
ind𝑖 (𝑖) will look something like 𝑖2, where the left superscript denotes tetration - that is, a power
tower consisting of 𝑖 many 2s. Therefore, if we let slog2(𝑛) denote the smallest natural number
𝑖 such that ind𝑖 (𝑖) < 𝑖 , then our diagonalizing sequence (𝑐𝑛) could be given by

𝑐𝑛 = 𝑛−1 · (1 + log2 𝑛)−1 ·
(
1 + log2(1 + log2 𝑛)

)−1 · · · · · ( slog2 (𝑛) nested logarithms︷                                ︸︸                                ︷
1 + log2

(
· · · (1 + log2 𝑛) · · ·

) )−1
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This sequence decays faster than each growth order (𝔫𝔩1 · · · 𝔩𝑚)−1, yet its partial sums still
diverge. (Note: the name slog2 is chosen as a reference to the so-called "super-logarithm", which
is sometimes dened as an analogue of the logarithm for tetration rather than exponentiation.)

Now consider the proof of the previous theorem, this time paying attention to the special case
in which the ratios 𝔞𝑖/𝔞 𝑗 are monotone. Because it is often convenient for us to deal with
growth orders whose pairwise quotients are monotone, we would like to be able to construct a
growth order 𝔠 with divergent sums not only satisfying 𝔠 < 𝔞𝑖 for each 𝑖 , but also making the
quotients 𝔞𝑖/𝔠 monotone. It is not hard to see, however, that the construction from the above
proof will result in 𝔠 having monotone quotients with each of the 𝔞𝑖 . This can be shown by
choosing the sequences (𝑎 (𝑖)𝑛 ) (and therefore also (𝑏 (𝑖)𝑛 )) to have monotone quotients, and then
noticing that each of the sequences (𝑐𝑛/𝑏 (𝑖)𝑛 ) is eventually monotone, specically monotone for
all 𝑛 > ind𝑖−1(𝑖 − 1). That is,

𝑐𝑛+1

𝑏
(𝑖)
𝑛+1

≤ 𝑐𝑛

𝑏
(𝑖)
𝑛

whenever 𝑛 > ind𝑖−1(𝑖 − 1). When 𝑛 does not take the form 𝑛 = ind𝑚 (𝑚), this inequality
follows from the fact that the sequences (𝑏 ( 𝑗)𝑛 /𝑏 (𝑖)𝑛 ) are monotone decreasing for 𝑗 ≥ 𝑖 , since
𝑐𝑛 is piecewise dened by these sequences on successive intervals. When 𝑛 = ind𝑚 (𝑚), the
inequality follows from this combined with the fact that 𝑏 ( 𝑗+1)𝑛 ≤ 𝑏 ( 𝑗)𝑛 for all 𝑗 . Hence, we have
the following renement of the previous proposition:

Proposition 40. Given an innite descending sequence of growth orders

· · · < 𝔞3 < 𝔞2 < 𝔞1 < 1

such that 𝔞𝑖/𝔞 𝑗 is monotone and Σ𝔞𝑖 > 1 for any 𝑖, 𝑗 ∈ N, there always exists some growth
order 𝔠 such that 𝔞 < 𝔞𝑖 with 𝔞𝑖/𝔠 monotone for all 𝑖 ∈ N, and yet Σ𝔠 > 1.
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5.1. Definition of the composite

Given a sequence (𝑎𝑛), we might want to examine the ways in which its growth order can
change when it is reindexed. For instance, we may want to consider subsequences like (𝑎2𝑛)
- which, as we proved earlier, has the same growth order as (𝑎𝑛) given moderate growth - or
(𝑎𝑛2). These subsequences accelerate the growth or decay of the sequence (𝑎𝑛), but we might
also consider subsequences like (𝑎 b√𝑛c) that "slow down" the original sequence.

In general, we may want to consider (𝑎𝑏𝑛 ) for an arbitrary indexing sequence (𝑏𝑛). However,
this only makes sense when 𝑏𝑛 is a sequence of natural numbers, since 𝑎𝑛 is only dened for
𝑛 ∈ N. Hence, if we want to dene the composite of two sequences 𝛼 ◦ 𝛽 = (𝑎𝑏𝑛 ), we need (𝑏𝑛)
to consist of natural numbers.

Denition 14. Given sequences 𝛼 ∈ S(R+) and 𝛽 ∈ S(N), dene their composite,
denoted by 𝛼 ◦ 𝛽 , to be the sequence (𝑎𝑏𝑛 ), and 𝛽 is called the indexing sequence.

However, even if (𝑏𝑛) is not a sequence of natural numbers, there may still exist a sequence of
natural numbers of the same growth order which could be used as a sequence of indices in place
of (𝑏𝑛). In fact, the following proposition proves that such a sequence exists whenever 𝔟 ≥ 1.

Proposition 41. For every sequence 𝛼 = (𝑎𝑛) ∈ S(R+) with [𝛼] ≥ 1, there exists a
sequence of natural numbers 𝛽 ∈ S(N) such that [𝛼] = [𝛽].

Proof. Let [𝛼] ≥ 1. Then we shall show that the sequence 𝛽 = (𝑏𝑛) ∈ S(N) dened by
𝑏𝑛 = d𝑎𝑛e has the same growth order as 𝛼 . Since d𝑥e − 𝑥 ∈ [0, 1) for all 𝑥 ∈ R+, it follows that
𝑏𝑛 − 𝑎𝑛 ∈ [0, 1) and therefore

𝑎𝑛 ≤ 𝑏𝑛 ≤ 𝑎𝑛 + 1

for all 𝑛 ∈ N. Since [𝛼] ≥ 1, we have that 𝑎𝑛 ≥ 𝐶 for some 𝐶 ∈ R+, meaning that 𝑎𝑛 + 1 ≤
(1 +𝐶−1)𝑎𝑛 , and therefore

𝑎𝑛 ≤ 𝑏𝑛 ≤ (1 +𝐶−1)𝑎𝑛
for all 𝑛 ∈ N, proving that [𝛼] = [𝛽] as claimed. �

Now that we can dene the composite of two sequences 𝛼, 𝛽 with [𝛽] ≥ 1, we’d like to dene it
on growth orders as well. The most natural denition would be to let 𝔞 ◦ 𝔟 = [𝛼] ◦ [𝛽] = [𝛼 ◦ 𝛽].
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However, we must rst show that this operation is well-dened for the class of growth orders
that we are concerned with - namely, the moderate ones.

Proposition 42. Let 𝛼, 𝛼 ′ ∈ S(R+) and 𝛽, 𝛽 ′ ∈ S(N). If [𝛼] = [𝛼 ′] and [𝛽] = [𝛽 ′], and
𝛼, 𝛼 ′ exhibit moderate growth, then [𝛼 ◦ 𝛽] = [𝛼 ′ ◦ 𝛽 ′].

NEW (BETTER) PROOF:

Proof. It suces to show the following two facts:

1. If 𝛼, 𝛼 ′ ∈ S(R+) are moderate with 𝛼 ∼ 𝛼 ′ and 𝛽 ∈ S(N), then 𝛼 ◦ 𝛽 ∼ 𝛼 ′ ◦ 𝛽 .

2. If 𝛼 ∈ S(R+) is moderate and 𝛽, 𝛽 ′ ∈ S(N) with 𝛽 ∼ 𝛽 ′, then 𝛼 ◦ 𝛽 ∼ 𝛼 ◦ 𝛽 ′.

In other words, we are showing that the growth order of 𝛼 ◦ 𝛽 depends only on the respective
growth orders of 𝛼 and 𝛽 .

The former claim (1) is trivial to show: because 𝛼 ∼ 𝛼 ′, we have that there exist constants
𝐶1,𝐶2 > 0 such that

𝐶1𝑎𝑛 ≤ 𝑎′𝑛 ≤ 𝐶2𝑎𝑛

for all 𝑛 ∈ N. Because this holds for all natural numbers 𝑛, we may replace 𝑛 with 𝑏𝑛 , obtaining
the inequality

𝐶1𝑎𝑏𝑛 ≤ 𝑎′
𝑏𝑛

≤ 𝐶2𝑎𝑏𝑛

which simply states that 𝛼 ◦ 𝛽 ∼ 𝛼 ′ ◦ 𝛽 by denition.

The latter claim is a little more cumbersome to prove. Let 𝛼, 𝛽, 𝛽 ′ be given as in (2), and let
𝐶1,𝐶2 > 0 be constants such that

𝐶1𝑏𝑛 ≤ 𝑏 ′𝑛 ≤ 𝐶2𝑏𝑛

for all 𝑛 ∈ N. This implies the following weaker inequality, since d𝑥e ≥ 𝑥 and d𝑥−1e−1 ≤ 𝑥 for
all 𝑥 > 0:

d𝐶−1
1 e−1𝑏𝑛 ≤ 𝑏 ′𝑛 ≤ d𝐶2e𝑏𝑛

Therefore, we have natural numbers 𝐾1 = d𝐶−1
1 e and 𝐾2 = d𝐶2e such that

𝐾−1
1 𝑏𝑛 ≤ 𝑏 ′𝑛 ≤ 𝐾2𝑏𝑛

Now, because 𝑏 ′𝑛 is an integer, and d𝐾−1
1 𝑏𝑛e is the smallest integer greater than or equal to

𝐾−1
1 𝑏𝑛 , we have that

d𝐾−1
1 𝑏𝑛e ≤ 𝑏 ′𝑛 ≤ 𝐾2𝑏𝑛

Further, notice that 𝑏𝑛 ≥ 𝐾1d𝐾−1
1 𝑏𝑛e, since d𝐾−1𝑏𝑛e = 𝐾−1𝑏𝑛 + 𝛿 for some 𝛿 ∈ [0, 1), meaning

that 𝐾1d𝐾−1
1 𝑏𝑛e = 𝑏𝑛 + 𝐾1𝛿 . Thus, we may loosen the upper bound by replacing 𝑏𝑛 with

𝐾1d𝐾−1
1 𝑏𝑛e:

d𝐾−1
1 𝑏𝑛e ≤ 𝑏 ′𝑛 ≤ 𝐾2𝐾1d𝐾−1

1 𝑏𝑛e
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Now we shall make use of the moderateness property of 𝛼 , which we will use to procure two
constants 𝐷1, 𝐷2. First, we may let 𝐷1 > 0 be a constant such that

𝑎𝑚 ≤ 𝐷1𝑎𝑛

for all 𝑛 ≤ 𝑚 ≤ 𝐾2𝐾1𝑛. Secondly, we may let 𝐷2 > 0 be a constant such that 𝑎𝑚 ≤ 𝐷2𝑎𝑛 for all
𝑛 ≤ 𝑚 ≤ (𝐾1 + 1)𝑛. We shall use these denitions to procure a chain of inequalities culminating
in the inequality 𝑎𝑏′𝑛 ≤ 𝐷1𝐷

2
2𝑎𝑏𝑛 . First of all, we have that

𝑎𝑏′𝑛 ≤ 𝐷1𝑎 d𝐾−1
1 𝑏𝑛 e

by the denition of 𝐷1, and because d𝐾−1
1 𝑏𝑛e ≤ 𝑏 ′𝑛 ≤ 𝐾2𝐾1d𝐾−1

1 𝑏𝑛e as proven earlier. (We are
using the denition of 𝐷1, but replacing𝑚 with 𝑏 ′𝑛 and replacing 𝑛 with d𝐾−1

1 𝑏𝑛e.) Next, we
have the inequality

𝐷1𝑎 d𝐾−1
1 𝑏𝑛 e ≤ 𝐷1𝐷2𝑎𝐾1 d𝐾−1

1 𝑏𝑛 e

by the denition of 𝐷2, and because d𝐾−1
1 𝑏𝑛e ≤ 𝐾1d𝐾−1

1 𝑏𝑛e ≤ (𝐾1 + 1) d𝐾−1
1 𝑏𝑛e. (This time, we

are using the denition of 𝐷2 while replacing𝑚 with 𝐾1d𝐾−1
1 𝑏𝑛e and replacing 𝑛 with d𝐾−1

1 𝑏𝑛e.)
Finally, we have the inequality

𝐷1𝐷2𝑎𝐾1 d𝐾−1
1 𝑏𝑛 e ≤ 𝐷1𝐷

2
2𝑎𝑏𝑛

which follows from the denition of 𝐷2 and the incredibly weak inequality 𝑏𝑛 ≤ 𝐾1d𝐾−1
1 𝑏𝑛e ≤

(𝐾1 + 1)𝑏𝑛 . (We are using the denition of 𝐷2 again and replacing 𝑚 with 𝐾1d𝐾−1
1 𝑏𝑛e and

replacing 𝑛 with 𝑏𝑛 .) Thus, we have established the following chain of 3 inequalities:

𝑎𝑏′𝑛 ≤ 𝐷1𝑎 d𝐾−1
1 𝑏𝑛 e ≤ 𝐷1𝐷2𝑎𝐾1 d𝐾−1

1 𝑏𝑛 e ≤ 𝐷1𝐷
2
2𝑎𝑏𝑛

which, at least, tells us that 𝑎𝑏′𝑛 ≤ 𝐷1𝐷
2
2𝑎𝑏𝑛 , or that [𝛼 ◦ 𝛽 ′] ≤ [𝛼 ◦ 𝛽]. However, since 𝛽, 𝛽 ′

were completely arbitrary, we have by symmetry that [𝛼 ◦ 𝛽] ≤ [𝛼 ◦ 𝛽 ′] as well, meaning that
𝛼 ◦ 𝛽 ∼ 𝛼 ◦ 𝛽 ′. This completes the proof of (2). �

OLD (SLOPPY) PROOF:

Proof. If we are given that [𝛼] = [𝛼 ′] and [𝛽] = [𝛽 ′], then we may let 𝐶1,𝐶2,𝐶3,𝐶4 ∈ R+ be
constants such that

𝐶1𝑎𝑛 ≤ 𝑎′𝑛 ≤ 𝐶2𝑎𝑛

𝐶3𝑏𝑛 ≤ 𝑏 ′𝑛 ≤ 𝐶4𝑏𝑛

for all 𝑛 ∈ N. The second inequality above implies the weaker inequality

d𝐶−1
3 e−1𝑏𝑛 ≤ 𝑏 ′𝑛 ≤ d𝐶4e𝑏𝑛

We therefore have natural numbers 𝐾1 = d𝐶−1
3 e, 𝐾2 = d𝐶4e such that

𝐾−1
1 𝑏𝑛 ≤ 𝑏 ′𝑛 ≤ 𝐾2𝑏𝑛
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for all 𝑛. Furthermore, since 𝑏𝑛 is always an integer,

d𝐾−1
1 𝑏𝑛e ≤ 𝑏 ′𝑛 ≤ 𝐾2𝑏𝑛

and consequently
d𝐾−1

1 𝑏𝑛e ≤ 𝑏 ′𝑛 ≤ 𝐾2𝐾1d𝐾−1
1 𝑏𝑛e

for all 𝑛. By the moderate growth property of 𝑎 and the above inequality, there exist constants
𝐷1, 𝐷2 ∈ R+ such that 𝑎𝑏′𝑛 ≤ 𝐷1𝑎 d𝐾−1

1 𝑏𝑛 e for all 𝑛 ∈ N, and 𝑎𝑛 ≤ 𝐷2𝑎 (𝐾1+1)𝑛 for all 𝑛 ∈ N. Then
we have

𝑎′
𝑏′𝑛

≤ 𝐷1𝑎
′
d𝐾−1

1 𝑏𝑛 e
≤ 𝐷1𝐷2𝑎

′
𝐾1 d𝐾−1

1 𝑏𝑛 e
≤ 𝐷1𝐷

2
2𝑎

′
𝑏𝑛

since 𝐾1d𝐾−1
1 𝑏𝑛e is always between 𝑏𝑛 and (𝐾1 + 1)𝑏𝑛 . From this, we have that

𝑎′
𝑏′𝑛

≤ 𝐶2𝐷1𝐷
2
2𝑎𝑏𝑛

and therefore 𝑎′
𝑏′𝑛

= O(𝑎𝑏𝑛 ). Since the same line of reasoning also shows that 𝑎𝑏𝑛 = O(𝑎′
𝑏′𝑛
), we

have that (𝑎𝑏𝑛 ) ∼ (𝑎′
𝑏′𝑛
) and therefore [𝛼 ◦ 𝛽] = [𝛼 ′ ◦ 𝛽 ′] as claimed. �

This proves that the composition operation can be well-dened on growth orders of sequences,
not just individual sequences. In particular, we may dene the composition of growth orders
𝔞 ◦ 𝔟 whenever 𝔟 ≥ 1, by choosing an arbitrary sequence 𝛼 ∈ 𝔞 and an indexing sequence of
natural numbers 𝛽 ∈ 𝔟 (whose existence is guaranteed by the fact that 𝔟 ≥ 1) and considering
the growth order [𝛼 ◦ 𝛽]. This is well-dened because this equivalence class is independent of
the choice of 𝛼 and 𝛽 , as proven by the previous proposition.

Denition 15. Given growth orders 𝔞, 𝔟 with 𝔞moderate and 𝔟 ≥ 1, dene their composite
𝔞 ◦ 𝔟 as the equivalence class [𝛼 ◦ 𝛽], where 𝛼 ∈ 𝔞 and 𝛽 ∈ 𝔟 ∩ S(N) are arbitrary.

Note that the restriction to moderate growth sequences is necessary. Consider the sequence
𝑎𝑛 = 2𝑛2 and the two indexing sequences 𝑏𝑛 = 𝑛 and 𝑏 ′𝑛 = 𝑛 + 1. Clearly we have (𝑏𝑛) ∼ (𝑏 ′𝑛)
and therefore 𝔟 = [(𝑏𝑛)] = [(𝑏 ′𝑛)]. However, 𝑎𝑏𝑛 = 2𝑛2 has a strictly lesser growth order than
𝑎𝑏′𝑛 = 2(𝑛+1)2 . Hence 𝔞◦𝔟 is not well-dened, as we have two 𝛽, 𝛽 ′ ∈ 𝔟 for which [𝛼◦𝛽] ≠ [𝛼◦𝛽 ′].

If we consider growth orders with properties that make them amenable to both left- and
right-composition, we can form subsets of S(R+) that are closed under composition. Such
subsets sometimes carry the structure of a monoid, since the binary operation of composition is
associative.

Proposition 43. If G ⊂ S(R+) consists of moderate growth orders ≥ 1 and is closed under
composition, then it is a semigroup under composition. If it contains 𝔫, then it is a monoid
under composition.
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Since the properties of moderateness and monotonicity have proven useful to us so far, it is
worth showing that composition of growth orders preserves these properties.

Proposition 44. If 𝔞 and 𝔟 ≥ 1 are moderate, then 𝔞 ◦ 𝔟 is moderate.

Proof. Let (𝑎𝑛) ∈ 𝔞 be arbitrary, and let (𝑏𝑛) ∈ 𝔟 be a sequence of positive integers. Fix some
𝑘 ∈ N. Because (𝑏𝑛) is moderate, there exist constants 𝐶1,𝐶2 such that

𝐶1𝑏𝑛 ≤ 𝑏𝑚 ≤ 𝐶2𝑏𝑛

for all𝑚,𝑛 ∈ N with 𝑛 ≤ 𝑚 ≤ 𝑘𝑛. This implies that

d𝐶−1
1 e−1𝑏𝑛 ≤ 𝑏𝑚 ≤ d𝐶2e𝑏𝑛

Now let (𝑏 ′𝑛) be a sequence dened by 𝑏 ′𝑛 = d𝐶−1
1 e𝑏𝑛 , so that (𝑏 ′𝑛) is a sequence of positive

integers with the same growth order as (𝑏𝑛), such that d𝐶−1
1 e−1𝑏 ′𝑛 is a positive integer for all

𝑛 ∈ N. Then we also have
d𝐶−1

1 e−1𝑏 ′𝑛 ≤ 𝑏 ′𝑚 ≤ d𝐶2e𝑏 ′𝑛

Now, because (𝑎𝑛) is moderate, we have that:

1. There exist constants 𝐶3,𝐶4 such that 𝐶3𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶4𝑎𝑛 for all 𝑛 ≤ 𝑚 ≤ d𝐶−1
1 e𝑛

2. There exist constants 𝐶5,𝐶6 such that 𝐶5𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶6𝑎𝑛 for all 𝑛 ≤ 𝑚 ≤ d𝐶2e𝑛

3. There exist constants 𝐶7,𝐶8 such that 𝐶7𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝐶8𝑎𝑛 for all 𝑛 ≤ 𝑚 ≤ d𝐶−1
1 e d𝐶2e𝑛

From the previous inequality derived for (𝑏 ′𝑛), we know that, for all𝑚,𝑛 ∈ N such that 𝑛 ≤ 𝑚 ≤
𝑘𝑛,

𝐶7𝑎 d𝐶−1
1 e−1𝑏′𝑛 ≤ 𝑎𝑏′𝑚 ≤ 𝐶8𝑎 d𝐶2 e𝑏′𝑛

Further, from the denitions of the above constants, we have that

𝑎 d𝐶−1
1 e−1𝑏′𝑛 ≥ 𝐶−1

4 𝑎𝑏′𝑛

and
𝑎 d𝐶2 e𝑏′𝑛 ≤ 𝐶6𝑎𝑏′𝑛

so that
𝐶−1
4 𝐶7𝑎𝑏′𝑛 ≤ 𝑎𝑏′𝑚 ≤ 𝐶6𝐶8𝑎𝑏′𝑛

for all 𝑛 ≤ 𝑚 ≤ 𝑘𝑛. It follows that the sequence (𝑎𝑏′𝑛 ) is moderate, and since (𝑏𝑛) ∼ (𝑏 ′𝑛) have
the same growth order 𝔟, we have that 𝔞 ◦ 𝔟 is moderate, as claimed. �

Proving that composition preserves monotonicity is much more straightforward:

Proposition 45. If 𝔞 is monotone and 𝔟 ≥ 1 are monotone, then 𝔞 ◦ 𝔟 is monotone.
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Proof. This proof is almost trivial. Let (𝑎𝑛) ∈ 𝔞 be monotone and (𝑏𝑛) ∈ 𝔟 be a monotone
increasing sequence of positive integers. If (𝑎𝑛) is monotone increasing, then 𝑖 ≤ 𝑗 implies
𝑏𝑖 ≤ 𝑏 𝑗 and 𝑎𝑏𝑖 ≤ 𝑎𝑏 𝑗 , so that (𝑎𝑏𝑛 ) is also monotone increasing. If (𝑎𝑛) is monotone decreasing,
then 𝑖 ≤ 𝑗 implies 𝑏𝑖 ≤ 𝑏 𝑗 and 𝑎𝑏𝑖 ≥ 𝑎𝑏 𝑗 , so that (𝑎𝑏𝑛 ) is also monotone decreasing. In either
case, (𝑎𝑏𝑛 ) is monotone, so we have that 𝔞 ◦ 𝔟 is monotone. �

5.2. Arithmetic and inequalities

Here are some elementary properties of composition, and its interactions with other operations
on growth orders:

Proposition 46. The following equalities hold for growth orders 𝔞, 𝔟, 𝔠 whenever the stated
composites are dened:

• (𝔞 ◦ 𝔟) ◦ 𝔟 = 𝔞 ◦ (𝔟 ◦ 𝔠)
• (𝔞 + 𝔟) ◦ 𝔠 = 𝔞 ◦ 𝔟 + 𝔞 ◦ 𝔠
• 𝔞𝔟 ◦ 𝔠 = (𝔞 ◦ 𝔠) (𝔟 ◦ 𝔠)
• 𝔞𝑝 = 𝔫𝑝 ◦ 𝔞

Proof. Trivial. �

Proposition 47. The following equalities hold for growth orders 𝔞, 𝔟, 𝔠 whenever the stated
composites are dened:

• 𝔞 ≤ 𝔟 =⇒ 𝔞 ◦ 𝔠 ≤ 𝔟 ◦ 𝔠
• 𝔞 ≥ 1 monotone, 𝔟 ≤ 𝔠 =⇒ 𝔞 ◦ 𝔟 ≤ 𝔞 ◦ 𝔠
• 𝔞 ≤ 1 monotone, 𝔟 ≤ 𝔠 =⇒ 𝔞 ◦ 𝔟 ≥ 𝔞 ◦ 𝔠

Proof. For the rst claim, suppose 𝔞 ≤ 𝔟 and let (𝑐𝑛) ∈ 𝔠 be a sequence of positive integers. If
(𝑎𝑛) ∈ 𝔞 and (𝑏𝑛) ∈ 𝔟 such that 𝑎𝑛/𝑏𝑛 is bounded above, then we clearly have that 𝑎𝑐𝑛/𝑏𝑐𝑛 is
bounded above (by the same upper bound). The sequences 𝑎𝑐𝑛 and 𝑏𝑐𝑛 have growth orders 𝔞 ◦ 𝔠
and 𝔟 ◦ 𝔠 respectively, so we have that 𝔞 ◦ 𝔠 ≤ 𝔟 ◦ 𝔠.

For the second claim, suppose that (𝑎𝑛) ∈ 𝔞 is monotone increasing and (𝑏𝑛) ∈ 𝔟, (𝑐𝑛) ∈ 𝔠. If
𝔟 ≤ 𝔠, then 𝑏𝑛/𝑐𝑛 is bounded above by some positive constant 𝐶 . If we dene another sequence
𝑏 ′𝑛 = 𝑏𝑛/𝐶 , then we have that 𝑏 ′𝑛 ≤ 𝑐𝑛 for all 𝑛 ∈ N and (𝑏 ′𝑛) ∈ 𝔟. Since (𝑎𝑛) is monotone
increasing we have that 𝑎𝑏′𝑛 ≤ 𝑎𝑐𝑛 and therefore 𝔞 ◦ 𝔟 ≤ 𝔞 ◦ 𝔠. The argument is much the same
for the third claim, except that (𝑎𝑛) will be monotone decreasing. �

Note that the restriction to monotone growth orders 𝔞 in the latter two claims is essential,
for neither implication is necessarily true for non-monotone growth orders 𝔞. Consider, for
instance, the sequence (𝑎𝑛) dened by

𝑎𝑛 = 𝑛1+sin log log𝑛
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A similar sequence was considered in a previous counterexample in section 4.2, page 24 , and
the same technique can be applied here to show that 𝑎𝑛 is monotone. Consider also the indexing
sequences (𝑏𝑛), (𝑐𝑛) given by 𝑏𝑛 = 𝑛 and 𝑐𝑛 = b𝑛𝑝c, where 𝑝 = 𝑒𝑒

𝜋 . We have that |𝑐𝑛 − 𝑛𝑝 | ≤ 1,
and therefore

| log log 𝑐𝑛 − log log𝑛 | = 𝜋 + 𝑜 (1)

which means that, since the sine function is continuous,

sin log log 𝑐𝑛 = − sin log log𝑏𝑛 + 𝑜 (1)

which implies that
𝑎𝑏𝑛

𝑎𝑐𝑛
= 𝑛2 sin log log𝑛 · 𝑛𝑜 (1)

This sequence is not comparable to 1, since it has subsequences tending to 0 and to∞. Hence, we
have that 𝔞 ◦ 𝔟 ⊥ 𝔞 ◦ 𝔠, showing that 𝔞 ≥ 1 and 𝔟 ≤ 𝔠 do not necessarily imply that 𝔞 ◦ 𝔟 ≤ 𝔞 ◦ 𝔠.

5.3. Absorption

Denition 16. Given growth orders 𝔞, 𝔟 such that 𝔞 ◦ 𝔟 is dened, we say that 𝔞 absorbs
𝔟 if 𝔞 ◦ 𝔟 = 𝔞.

Proposition 48. If 𝔞 absorbs 𝔟 and 𝔟 absorbs 𝔠, then 𝔞 absorbs 𝔠.

Proof. Given that the compositions 𝔞◦𝔟 and 𝔟◦𝔠 are dened, with 𝔞 absorbing 𝔟 and 𝔟 absorbing
𝔠, we have that

𝔞 ◦ 𝔠 = (𝔞 ◦ 𝔟) ◦ 𝔠 = 𝔞 ◦ (𝔟 ◦ 𝔠) = 𝔞 ◦ 𝔟 = 𝔞

and therefore 𝔞 ◦ 𝔠 = 𝔞 and 𝔞 absorbs 𝔠. �

Proposition 49. If 𝔞, 𝔟 are moderate growth orders such that 𝔟/𝔞 is monotone, and 𝔠 ≥ 𝔫,
then it follows that

𝔞 ≤ 𝔟 =⇒ (Σ𝔞) ◦ 𝔠
Σ𝔞

≤ (Σ𝔟) ◦ 𝔠
Σ𝔟

Proof. Let 𝔞 ≤ 𝔟 and 𝔟/𝔞 be monotone. Then we may choose a monotone increasing sequence
(𝑟𝑛) ∈ 𝔟/𝔞, and sequences (𝑎𝑛) ∈ 𝔞, (𝑏𝑛) ∈ 𝔟 such that 𝑏𝑛 = 𝑟𝑛𝑎𝑛 for all 𝑛 ∈ N. Further, we may
choose some (𝑐𝑛) ∈ 𝔠 such that 𝑐𝑛 ≥ 𝑛 for all 𝑛 ∈ N. Then notice that, since (𝑟𝑛) is monotone
increasing, we have the following two inequalities:

𝑛∑︁
𝑘=1

𝑏𝑘 =

𝑛∑︁
𝑘=1

𝑟𝑘𝑎𝑘 ≤ 𝑟𝑛
𝑛∑︁
𝑘=1

𝑎𝑘
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𝑐𝑘∑︁
𝑘=𝑛+1

𝑏𝑘 =

𝑐𝑛∑︁
𝑘=𝑛+1

𝑟𝑘𝑎𝑘 ≥ 𝑟𝑛
𝑐𝑛∑︁

𝑘=𝑛+1
𝑎𝑘

Therefore, we have the following chain of inequalities:( 𝑐𝑛∑︁
𝑘=𝑛+1

𝑎𝑘

) ( 𝑛∑︁
𝑘=1

𝑏𝑘

)
≤

( 𝑐𝑛∑︁
𝑘=𝑛+1

𝑎𝑘

)
· 𝑟𝑛

( 𝑛∑︁
𝑘=1

𝑎𝑘

)
≤

( 𝑐𝑛∑︁
𝑘=𝑛+1

𝑏𝑘

) ( 𝑛∑︁
𝑘=1

𝑏𝑘

)
and therefore ( 𝑐𝑛∑︁

𝑘=𝑛+1
𝑎𝑘

) ( 𝑛∑︁
𝑘=1

𝑏𝑘

)
≤

( 𝑐𝑛∑︁
𝑘=𝑛+1

𝑏𝑘

) ( 𝑛∑︁
𝑘=1

𝑏𝑘

)
or, equivalently, ∑𝑐𝑛

𝑘=𝑛+1 𝑎𝑘∑𝑛
𝑘=1 𝑎𝑘

≤
∑𝑐𝑛
𝑘=𝑛+1 𝑏𝑘∑𝑛
𝑘=1 𝑏𝑘

or, by adding 1 to both sides of this inequality, we have∑𝑐𝑛
𝑘=1 𝑎𝑘∑𝑛
𝑘=1 𝑎𝑘

≤
∑𝑐𝑛
𝑘=1 𝑏𝑘∑𝑛
𝑘=1 𝑏𝑘

which implies that
(Σ𝔞) ◦ 𝔠

Σ𝔞
≤ (Σ𝔟) ◦ 𝔠

Σ𝔟

as desired. �

The lemma above allows us to prove a sort of "squeezing" property of absorption.

Proposition 50. Let 𝔞, 𝔟 be moderate and monotone growth orders such that 𝔟/𝔞 is
monotone and 1 ≤ 𝔞 ≤ 𝔟. If 𝔠 ≥ 𝔫 and Σ𝔟 absorbs 𝔠, then Σ𝔞 also absorbs 𝔠.

Proof. If Σ𝔟 absorbs 𝔠, then (Σ𝔟) ◦ 𝔠 = Σ𝔟, and therefore

(Σ𝔟) ◦ 𝔠
Σ𝔟

= 1

Similarly, since 1 absorbs every growth order, we have

1 ◦ 𝔠
1

= 1

Now, since 1 ≤ 𝔞 ≤ 𝔟 and the ratios 𝔞/𝔫−2 and 𝔟/𝔞 are monotone (where 1 = Σ𝔫−2), we have
from the above proposition that

1 ◦ 𝔠
1

≤ (Σ𝔞) ◦ 𝔠
Σ𝔞

≤ (Σ𝔟) ◦ 𝔠
Σ𝔟
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or
1 ≤ (Σ𝔞) ◦ 𝔠

Σ𝔞
≤ 1

which implies that
(Σ𝔞) ◦ 𝔠

Σ𝔞
= 1

and therefore (Σ𝔞) ◦ 𝔠 = Σ𝔞, meaning that Σ𝔞 also absorbs 𝔠 as claimed. �

Exercise 5 If 𝑓 : N → N is an increasing function with the property that 𝑓 (𝑎𝑛) = O(𝑓 (𝑛))
for all O(𝑛 log𝑛) sequences (𝑎𝑛) ⊂ N, show that this bound also holds for all O(𝑛 log42 𝑛)
sequences (𝑎𝑛) ⊂ N.

The following proposition shows that it’s easy to take partial sums of growth orders that are
very "absorbant":

Proposition 51. If 𝔞 is monotone and absorbs some 𝔟 < min(𝔫, 𝔞𝔫), then Σ𝔞 = 𝔫𝔞.

Proof. Let (𝑎𝑛) ∈ 𝔞 be monotone, and choose (𝑏𝑛) ∈ 𝔟 to be a sequence of integers such that
𝑏𝑛 ≤ 𝑛 for all 𝑛 ∈ N.

First suppose (𝑎𝑛) is monotone increasing. Then we have that

𝑛∑︁
𝑖=1

𝑎𝑖 =

𝑏𝑛∑︁
𝑖=1

𝑎𝑖 +
𝑛∑︁

𝑖=𝑏𝑛+1
𝑎𝑖 ≥ (𝑛 − 𝑏𝑛 + 1)𝑎𝑏𝑛 ∼ 𝑛𝑎𝑛

since 𝔟 < 𝔫 and 𝑎𝑏𝑛 ∼ 𝑎𝑛 . We also clearly have that

𝑛∑︁
𝑖=1

𝑎𝑖 ≤ 𝑛𝑎𝑛

because (𝑎𝑛) is monotone increasing. Thus, we have 𝔫𝔞 ≤ Σ𝔞 ≤ 𝔫𝔞, and therefore Σ𝔞 = 𝔫𝔞.

Now suppose that (𝑎𝑛) is monotone decreasing. This time we have that

𝑛∑︁
𝑖=1

𝑎𝑖 =

𝑏𝑛∑︁
𝑖=1

𝑎𝑖 +
𝑛∑︁

𝑖=𝑏𝑛+1
𝑎𝑖 ≤ 𝑎1𝑏𝑛 + (𝑛 − 𝑏𝑛)𝑎𝑏𝑛 ∼ 𝑛𝑎𝑛

because (𝑛 − 𝑏𝑛)𝑎𝑏𝑛 ∼ 𝑛𝑎𝑛 (since 𝔟 < 𝔫), and 𝑎1𝑏𝑛 + 𝑛𝑎𝑛 ∼ 𝑛𝑎𝑛 (since 𝔟 < 𝔞𝔫). On the other
hand, we clearly have

𝑛∑︁
𝑖=1

𝑎𝑖 ≥ 𝑛𝑎𝑛

because (𝑎𝑛) is monotone decreasing. Thus, we again have 𝔫𝔞 ≤ Σ𝔞 ≤ 𝔫𝔞 and therefore
Σ𝔞 = 𝔫𝔞. �
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5.4. Inverses and cancellation

Denition 17. Given growth orders 𝔞 and 𝔟, if 𝔞 ◦ 𝔟 = 𝔫, then we say that 𝔟 is a right
inverse of 𝔞, and that 𝔞 is a le inverse of 𝔟.

A right inverse of a growth order can be thought of as a way of reindexing sequences of that
growth order in such a way that they exhibit linear growth. A left inverse, on the other hand,
can be thought of as a sequence whose subsequences along a given reindexing exhibit linear
growth.

We remarked earlier that subsets G ⊂ S(R+) consisting of moderate growth orders ≥ 1 carry a
monoid structure if they are closed under composition. From the monoid structure alone, we
can deduce a couple basic properties of inverses of growth orders. For instance:

Proposition 52. If a moderate growth order 𝔞 ≥ 1 has both a left-inverse 𝔟 and a right-
inverse 𝔠, then 𝔟 = 𝔠.

Proof. Suppose that 𝔟 ◦ 𝔞 = 𝔞 ◦ 𝔠 = 𝔫. Then we have that 𝔟 ◦ (𝔞 ◦ 𝔠) = 𝔟 ◦ 𝔫. The LHS of this
equality is equal to 𝔠, since 𝔟 ◦ 𝔞 = 𝔫 and 𝔫 ◦ 𝔠 = 𝔠, making use of associativity. The RHS is
equal to 𝔟 ◦ 𝔫 = 𝔟. Thus, we have 𝔠 = 𝔟 as claimed. �

Proposition 53. If 𝔞 is moderate, then Σ𝔞 > 1 implies that Σ𝔞 has a right-inverse.

Proof. Let 𝔞 be a given moderate growth order, and let 𝔟 = Σ𝔞. This makes 𝔟 a monotone
growth order, so that we may choose some monotone (𝑏𝑛) ∈ 𝔟. Dene the sequence (𝑐𝑛) by
letting 𝑐𝑛 be the least natural number𝑚 such that 𝑏𝑚 ≥ 𝑛. (Such𝑚 always exists because 𝔟 > 1
and 𝑏𝑛 is therefore unbounded.) Notice that (𝑐𝑛) is monotone and unbounded by this denition,
because (𝑏𝑛) cannot attain unboundedly large values in only nitely many terms.

Now consider the sequence (𝑏𝑐𝑛 ). We will show that this sequence has growth order 𝔫, and
that 𝔠 = [(𝑐𝑛)] is therefore a right-inverse of 𝔟. Let𝑚 ∈ N, and dene 𝑘 = b𝑏𝑚c and 𝑙 = b𝑏𝑚+1c.
Then we have that

𝑘 ≤ 𝑏𝑐𝑘 < 𝑘 + 1

because 𝑏𝑐𝑘 ≥ 𝑘 follows from the denition of 𝑐𝑘 , and the upper bound follows from the fact
that 𝑐𝑘 ≤ 𝑚 and therefore 𝑏𝑐𝑘 ≤ 𝑏𝑚 < 𝑘 + 1 by the monotonicity of (𝑏𝑛). Now, using the
monotonicity of (𝑏𝑛) again, we can say that for any 𝑖 between 𝑘 and 𝑙 , we have
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|𝑏𝑐𝑖 − 𝑖 | ≤ |𝑏𝑐𝑖 − 𝑏𝑐𝑘 | + |𝑏𝑐𝑘 − 𝑘 | + |𝑘 − 𝑖 | (5.1)
≤ |𝑏𝑐𝑙 − 𝑏𝑐𝑘 | + |𝑏𝑐𝑘 − 𝑘 | + |𝑙 − 𝑘 | (5.2)
≤ (|𝑙 − 𝑘 | + 1) + 1 + |𝑙 − 𝑘 | (5.3)
= 2|𝑙 − 𝑘 | + 2 (5.4)
≤ 2| b𝑏𝑚+1c − b𝑏𝑚c | + 2 (5.5)
≤ 2|𝑏𝑚+1 − 𝑏𝑚 | + 4 (5.6)
≤ 2𝑎𝑚+1 + 4 (5.7)

≤ 2𝐶 · 𝑏𝑚+1
𝑚 + 1 + 4 (5.8)

where the nal step holds true for some𝐶 ∈ R+ (which does not depend on 𝑖) because 𝔟 = Σ𝔞 ≥
𝔫𝔞, since 𝔞 is moderate. Now notice that setting𝑚 = 𝑐𝑖 − 1 guarantees 𝑘 < 𝑖 ≤ 𝑙 , so that we
have

𝑏𝑐𝑖 − 𝑖 ≤ 2𝐶 ·
𝑏𝑐𝑖

𝑐𝑖
+ 4

Now, since we already know that 𝑏𝑐𝑖 is bounded below by 𝑖 by denition, and since (𝑐𝑖) is
monotone and unbounded, we have that

𝑏𝑐𝑖 = 𝑖 + 𝑜 (𝑏𝑐𝑖 )

and therefore (𝑏𝑐𝑛 ) has growth order 𝔫, and 𝔟 ◦ 𝔠 = 𝔫 as desired.

�

5.5. Composition groups

If we nd a set of growth orders that is both closed under composition and contains an inverse
for each of its elements, then it carries the structure of not only a monoid, but a group. For
instance, consider the set of power growth orders with a positive power, taking the form 𝔫𝑝

with 𝑝 > 0. We have that 𝔫𝑝 ◦ 𝔫𝑞 = 𝔫𝑝𝑞 and inv(𝔫𝑝) = 𝔫1/𝑝 , so that this set of growth orders
has the same group structure as R>0× , the group of positive real numbers under multiplication,
which is isomorphic to the group R+ of real numbers under addition.

We can also consider the group of growth orders taking the form 𝔫𝑝 𝔩𝑞 , where 𝑝 > 0 and 𝑞 is
any real number. If we represent elements of this group by tuples (𝑝, 𝑞), then the group law of
this set of growth orders is given by

(𝑝, 𝑞) ◦ (𝑟, 𝑠) = (𝑝𝑟, 𝑝𝑠 + 𝑞)

and the formula for the inverse of an element is

(𝑝, 𝑞)−1 = (𝑝−1,−𝑞/𝑝)
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This group has a normal subgroup, namely the set of all elements of the form (1, 𝑞), since
(1, 𝑞) ◦ (1, 𝑠) = (1, 𝑞 + 𝑠). This means that the structure of this group can be expressed in the
form R>0× n𝜓 R+ where the homomorphism𝜓 : R>0× → Aut(R+) is given by

𝜓 : 𝑝 ↦→ (𝑠 ↦→ 𝑝𝑠)
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6. Closed chains

We have already examined a few dierent subsets of S(R+)/∼, consisting of growth orders
subject to certain "niceness" conditions, such as moderateness and monotonicity. In order to
"zoom in" on a particular subset G ⊂ S(R+)/∼ and do a deeper analysis there, we would
certainly like it so satisfy a few criteria. For instance, G should be closed under most of the
operations that we would like to perform, such as +, ·,÷, and Σ. It is often troublesome to deal
withS(R+)/∼ because it contains many growth orders with erratic and oscillatory behavior that
hardly even match our intuition of what a "growth order" should mean, so we would also like
G to exclude many of these pathological sequences. At best, we might even hope for trichotomy
to hold in G - that is, for any two growth orders in G to be comparable, or for G to be a chain.

In this section, we will see how to construct chains G ⊂ S(R+)/∼ that are closed under all of
the familiar operations on growth orders.

6.1. Failed aempts

6.2. SR-regularity and closure

Denition 18. We say that a subset G ⊂ S(R+)/∼ is moderate if every element of G is
moderate.

Denition 19. We say that a subset G ⊂ S(R+)/∼ has themonotone quotient property
if every quotient of elements of G is monotone.

Recall that monotone sequences are always comparable to 1, and two sequences are comparable
if and only if their quotient is comparable to 1. This means that the monotone quotient property
guarantees trichotomy in G, and is in fact a much stronger property (as we shall soon see).

Denition 20. We say that a subset G ⊂ S(R+)/∼ is SR-regular if, for every element
𝔞 ∈ G, either 𝔞 or 𝔞−1 has an inverse under Σ in G. That is, for any 𝔞 ∈ G, there exists
𝔟 ∈ G such that either 𝔞 = Σ𝔟 or 𝔞 = (Σ𝔟)−1.
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Denition 21. Given a subset G ⊂ S(R+)/∼, denote by ΣG and RG the following sets:

ΣG = {Σ𝔞 : 𝔞 ∈ G}

RG = {𝔞−1 : 𝔞 ∈ G}

Proposition 54. If G is SR-regular, then we have that G ⊂ ΣG ∪ RΣG.

Proof. Follows from the denition of SR-regularity. �

Denition 22. If G ∈ S(R+)/∼ is SR-regular, then by the previous proposition we may
recursively dene a sequence of nested subsets

G = G0 ⊂ G1 ⊂ · · · ⊂ G𝑛 ⊂ · · ·

dened by G𝑛+1 = ΣG𝑛 ∪ RΣG𝑛 . Dene the SR-closure of G to be the set

G =

∞⋃
𝑛=0

G𝑛

Proposition 55. SupposeG is moderate and SR-regular and satises the monotone-quotient
property. Then G is also moderate and SR-regular and satises the monotone-quotient
property, and is furthermore closed under partial sums and reciprocals.

Proof. The fact that G is moderate follows from the fact that Σ𝔞 and 𝔞−1 are moderate whenever
𝔞 is moderate.

To prove that G has the monotone-quotient property, we will prove inductively that each G𝑛 has
this property, and since the G𝑛 are nested and G is their union, it must also have this property.
Suppose that all quotients of elements of G𝑛 are monotone. By the denition of G𝑛+1, each
element 𝔞 ∈ G𝑛+1 is either equal to Σ𝔞′ or (Σ𝔞′)−1 for some 𝔞′ ∈ G𝑛 . Let 𝔞, 𝔟 ∈ G𝑛+1 be arbitrary.
WLOG, there are three cases to consider:

1. 𝔞 = Σ𝔞′ and 𝔟 = Σ𝔟′, with 𝔞′, 𝔟′ ∈ G𝑛
2. 𝔞 = Σ𝔞′ and 𝔟 = (Σ𝔟′)−1, with 𝔞′, 𝔟′ ∈ G𝑛
3. 𝔞 = (Σ𝔞′)−1 and 𝔟 = (Σ𝔟′)−1, with 𝔞′, 𝔟′ ∈ G𝑛

In case 2, we would have 𝔞 containing a monotone increasing sequence and 𝔟 containing a
monotone decreasing sequence, so that the quotient 𝔞/𝔟 contains amonotone increasing element
equal to the elementwise quotient of these two sequences. In case 1, we have that 𝔞/𝔟 = Σ𝔞′/Σ𝔟′
is monotone by 29, since 𝔞′, 𝔟′ ∈ G𝑛 . Similarly, in case 3, we have that 𝔞/𝔟 = Σ𝔟′/Σ𝔞′ is
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monotone. Thus, any quotient of elements of G𝑛+1 has the monotone quotient property, given
that G𝑛 has this property. Since G0 has this property by assumption, we have that each G𝑛 and
therefore G has the monotone quotient property.

To see why G is SR-regular, let 𝔞 ∈ G so that 𝔞 ∈ G𝑛 for some 𝑛 ∈ N or 𝑛 = 0. If 𝑛 = 0, we have
that 𝔞 = Σ𝔟 or 𝔞 = (Σ𝔟)−1 for some 𝔟 ∈ G0 because G0 is SR-regular by assumption. If 𝑛 > 0,
then G𝑛 = ΣG𝑛−1 ∪ RΣG𝑛−1, meaning that either 𝔞 ∈ ΣG𝑛−1 or 𝔞 ∈ RΣG𝑛−1. In the former case
we have 𝔞 = Σ𝔟, and in the latter case we have 𝔞 = (Σ𝔟)−1, where 𝔟 ∈ G𝑛−1 ⊂ G. In any case,
there exists 𝔟 ∈ G such that 𝔞 = Σ𝔟 or 𝔞 = (Σ𝔟)−1, making G SR-regular as claimed.

Finally, we show that G is closed under sums and reciprocals. If 𝔞 ∈ G𝑛 ⊂ G, then we have that
Σ𝔞 ∈ G𝑛+1 ⊂ G. Further, we have that either 𝔞 = Σ𝔟 or 𝔞 = (Σ𝔟)−1 for some 𝔟 ∈ G𝑚 . In the
former case, we have 𝔞−1 = (Σ𝔟)−1 ∈ G𝑚+1. In the latter case, we have 𝔞−1 = Σ𝔟 ∈ G𝑚+1. Thus,
𝔞−1 ∈ G𝑚+1 ⊂ G in either case, and G is closed under reciprocals. �

Consider the following special set of growth orders:

Denition 23. Let the set of growth orders

M = {𝔫𝑝 : 𝑝 ∈ Z}

be called theminimal seed set.

Clearly the growth orders 𝔫𝑝 are both monotone and moderate for all 𝑝 ∈ Z. Further, this set is
SR-regular because

1. 𝔫𝑝 = Σ𝔫𝑝−1 for 𝑝 = 1, 2, · · ·

2. 𝔫𝑝 = RΣ𝔫−𝑝−1 for 𝑝 = −1,−2, · · ·

3. 𝔫𝑝 = Σ𝔫−2 for 𝑝 = 0

Thus, we may consider the SR-closure M. This set of growth orders is noteworthy because it is
the smallest of all SR-closed sets of growth orders!

Denition 24. If G is an SR-regular set of growth orders, thenM ⊂ G.

Proof. Let 𝔞 ∈ G be arbitrary. Then we have that Σ𝔞 ≥ 1, meaning that Σ3𝔞 ≥ 𝔫2. Thus we
have that RΣ3𝔞 ≤ 𝔫−2 and therefore ΣRΣ3𝔞 = 1. Hence, since G is closed under Σ and R, we
have that 1 ∈ G.

Finally, since 𝔫𝑝 = Σ𝑝1 and 𝔫−𝑝 = RΣ𝑝1 for all 𝑝 ∈ N, we have that G contains 𝔫𝑝 for all
𝑝 ∈ Z. Thus, it contains M = M0 as a subset, and since it is closed under Σ and R, it follows
inductively that G contains M𝑛 for all 𝑛 ∈ N and therefore their union M is also contained in
G, as claimed. �
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Exercise 6 Find a nite SR-regular set G such that G = M.

Exercise 7 What is the smallest possible cardinality that a moderate SR-regular set can have?

6.3. Nested log sums

In this section, we will "get down in the weeds" by taking a close look at one particular SR-closed
set, and completely characterizing all of the growth orders contained in it. Specically, we will
determine precisely what growth orders are contained in the SR-closure of the minimal seed
set M, and thereby determine which growth orders are contained in all SR-closed chains of
S(R+)/∼. The answer is rather surprising: the growth orders contained in M are precisely
those taking the form

𝔩(𝑝0, · · · , 𝑝𝑚) = 𝔫𝑝0 𝔩
𝑝1
1 · · · 𝔩𝑝𝑚𝑚

for 𝑝0, · · · , 𝑝𝑚 ∈ Z. This has a shocking implication - namely, that any set of sequences in which
you can take both partial sums and reciprocals contains sequences with the growth order of

𝑛𝑝0 · (log𝑛)𝑝1 · · · · · (

𝑚 nested logs︷      ︸︸      ︷
log · · · log 𝑛)𝑝𝑚

for 𝑝0, · · · , 𝑝𝑚 ∈ Z. The moral of this story is: if you want to be able to take partial sums and
reciprocals of sequences, you cannot avoid dealing with strange growth orders involving nested
logarithms!

Before resolving this, however, we must prove several "niceness" properties for growth orders
taking the above form. Along the way, we will learn how to compute the growth order of the
partial sums of any product of powers of nested logarithms.

Proposition 56. For all𝑚 ∈ N, the growth order 𝔩𝑚 is moderate and monotone.

Proof. Clearly 𝔩 = 𝔩1 is moderate and monotone. Since the composition of two moderate and
monotone growth orders is also moderate and monotone, and 𝔩𝑚+1 = 𝔩𝑚 ◦ 𝔩, the desired result
follows by induction. �

Proposition 57. For all 𝑝 ∈ R+ and 𝑖, 𝑗 ∈ N with 𝑖 < 𝑗 , we have 𝔩𝑝
𝑗
≤ 𝔩𝑖 . Additionally,

𝔩
𝑝

𝑖
≤ 𝔫 for all 𝑝 ∈ R+.

Proof. Let (𝑎𝑛) ∈ 𝔩𝑖 be such that 𝑎𝑛 > 1 for all 𝑛 ∈ N, so that the sequence (log𝑎𝑛) has growth
order 𝔩𝑖+1. Since log𝑥 ≤ 𝑥 for all 𝑥 ∈ R, we have that log𝑎1/𝑝𝑛 ≤ 𝑎1/𝑝𝑛 for all 𝑛 ∈ N and 𝑝 ∈ R+,
or equivalently (log𝑎𝑛)𝑝 ≤ 𝑝𝑝𝑎𝑛 . The LHS of this inequality has growth order 𝔩𝑝

𝑖+1 and the RHS
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has growth order 𝔩𝑖 , so we have that 𝔩𝑝
𝑖+1 ≤ 𝔩𝑖 for all 𝑝 ∈ R+ and 𝑖 ∈ N. This means that if 𝑖 < 𝑗 ,

we have
𝔩
𝑝

𝑗
≤ 𝔩 𝑗−1 ≤ · · · ≤ 𝔩𝑖+1 ≤ 𝔩𝑖 ≤ 𝔫

and therefore 𝔩𝑝
𝑗
≤ 𝔩𝑖 ≤ 𝔫, as desired. �

Proposition 58. For all 𝑝0, · · · , 𝑝𝑚 ∈ R, the growth order 𝔩(𝑝0, · · · , 𝑝𝑚) is monotone.

Proof. We proceed by induction on 𝑚. Suppose that this is true for some 𝑚 ∈ N. Since
𝔩(𝑞0, · · · , 𝑞𝑚) is monotone for all 𝑞0, · · · , 𝑞𝑚 ∈ R, and 𝔩 > 1 is also monotone, we have that the
growth order

𝔩(𝑞0, · · · , 𝑞𝑚) ◦ 𝔩 = 𝔩(0, 𝑞0, · · · , 𝑞𝑚)
is monotone. Now notice that, since 𝔩 absorbs 𝔫1/2, we also have that 𝔩(0, 𝑞0, · · · , 𝑞𝑚) absorbs
𝔫1/2. Further, by the above proposition, we have that 𝔫1/2 ≤ 𝔫𝔩(0, 𝑞0, · · · , 𝑞𝑚). Therefore, by 51,
we have

Σ𝔩(0, 𝑞0, · · · , 𝑞𝑚) = 𝔫𝔩(0, 𝑞0, · · · , 𝑞𝑚) = 𝔩(1, 𝑞0, · · · , 𝑞𝑚)
which is monotone because it is a partial sum. This further implies that 𝔩(1, 𝑞0, · · · , 𝑞𝑚)𝑟 , or
𝔩(𝑟, 𝑟𝑞0, · · · , 𝑟𝑞𝑚), is monotone, for any 𝑟 ∈ R. It follows that 𝔩(𝑝0, · · · , 𝑝𝑚+1) is monotone for
any 𝑝0, · · · , 𝑝𝑚+1 ∈ R, since any tuple (𝑝0, · · · , 𝑝𝑚+1) with 𝑝0 ≠ 0 can be written in the form
(𝑟, 𝑟𝑞0, · · · , 𝑟𝑞𝑚) for some 𝑟, 𝑞0, · · · , 𝑞𝑚 ∈ R, and the case of 𝑝0 = 0 has already been considered.
Thus, the inductive step is proven.

The base case of𝑚 = 0 is clearly true, since 𝔩(𝑝0) = 𝔫𝑝0 is monotone for any 𝑝0 ∈ R. Hence, by
induction, we have that 𝔩(𝑝0, · · · , 𝑝𝑚) is monotone for any 𝑝0, · · · , 𝑝𝑚 ∈ R. �

Having proven all of the "niceness" properties we need for nested logarithms, we are now
ready to start guring out how to calculate their partial sums. The next proposition proves the
following family of asymptotic identities:

𝑛∑︁
𝑘=1

1
𝑘
= Θ(log𝑛)

𝑛∑︁
𝑘=2

1
𝑘 log𝑘 = Θ(log log𝑛)

𝑛∑︁
𝑘=3

1
𝑘 log𝑘 log log𝑘 = Θ(log log log𝑛)

· · ·

Proposition 59. For all𝑚 ∈ N, we have

Σ(𝔫𝔩1 · · · 𝔩𝑚)−1 = 𝔩𝑚+1
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Proof. We shall prove this by induction. Suppose that this claim is true for some𝑚 ∈ N. Notice
that

P(𝔫𝔩1 · · · 𝔩𝑚)−1 =
(𝔫𝔩1 · · · 𝔩𝑚)−1

𝔩𝑚+1
= (𝔫𝔩1 · · · 𝔩𝑚𝔩𝑚+1)−1

From the previous proposition, we also have that (𝔫𝔩1 · · · 𝔩𝑚)−1 is moderate. This means that,
by 33, the partial sum of (𝔫𝔩1 · · · 𝔩𝑚)−1 has the growth order of log(1 + _), where _ ∈ 𝔩𝑚+1. But
such a sequence simply has growth order 𝔩𝑚+2, meaning that

Σ(𝔫𝔩1 · · · 𝔩𝑚𝔩𝑚+1)−1 = 𝔩𝑚+2

and therefore the inductive step is completed. The base case of𝑚 = 0 is clearly true, since
Σ𝔫−1 = 𝔩1, and thus the theorem is proven. �

Finally, we are ready to generalize to all products of powers of nested logarithms:

Proposition 60. Let 𝑝𝑙 , · · · , 𝑝𝑚 ∈ R with 𝑝𝑙 ≠ −1. Then we have that

Σ𝔩(−1, · · · ,−1, 𝑝𝑙 , 𝑝𝑙+1, · · · , 𝑝𝑚) =
{
𝔩(0, · · · , 0, 𝑝𝑙 + 1, 𝑝𝑙+1, · · · , 𝑝𝑚) if 𝑝𝑙 > −1
1 if 𝑝𝑙 < −1

Proof. First of all, suppose that 𝑝𝑙 < −1. (We shall handle the second case rst.) By 57, we have
that

𝔩(−1, · · · ,−1, 𝑝𝑙 , · · · , 𝑝𝑚) < 𝔩(−1, · · · ,−1, 𝑝𝑙 + 𝜖)

for any 𝜖 > 0. By choosing 𝜖 < −(𝑝𝑙 + 1), we can ensure that 𝑝𝑙 + 𝜖 < −1. Now, 59 implies that

𝔩(−1, · · · ,−1, 𝑝𝑙 + 𝜖) = 𝔩(−1, · · · ,−1) · (Σ𝔩(−1, · · · ,−1))𝑝𝑙+𝜖

and fromhere, 34 implies that Σ𝔩(−1, · · · ,−1, 𝑝𝑙+𝜖) = 1, since 𝑝𝑙+𝜖 < −1. Since 𝔩(−1, · · · ,−1, 𝑝𝑙 , · · · , 𝑝𝑚)
is less than 𝔩(−1, · · · ,−1, 𝑝𝑙 + 𝜖), its partial sum also converges, and therefore

Σ𝔩(−1, · · · ,−1, 𝑝𝑙 , · · · , 𝑝𝑚) = 1

which proves the second case.

Now suppose that 𝑝𝑙 > −1. By 57, we have that

𝔩(−1, · · · ,−1, 𝑝𝑙 − 𝜖) ≤ 𝔩(−1, · · · ,−1, 𝑝𝑙 , · · · , 𝑝𝑚) ≤ 𝔩(−1, · · · ,−1, 𝑝𝑙 + 𝜖)

for any 𝜖 > 0. Let us choose 𝜖 < 𝑝𝑙 + 1 so that 𝑝𝑙 − 𝜖 > −1. Now, the ratios

𝔩(−1, · · · ,−1, 𝑝𝑙 + 𝜖)
𝔩(−1, · · · ,−1, 𝑝𝑙 , · · · , 𝑝𝑚)

and
𝔩(−1, · · · ,−1, 𝑝𝑙 , · · · , 𝑝𝑚)
𝔩(−1, · · · ,−1, 𝑝𝑙 − 𝜖)
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are monotone by 58. Also, by 34, we have that

Σ𝔩(−1, · · · ,−1, 𝑝𝑙 + 𝜖) = 𝔩(−1, · · · ,−1, 𝑝𝑙 + 𝜖 + 1)

and
Σ𝔩(−1, · · · ,−1, 𝑝𝑙 − 𝜖) = 𝔩(−1, · · · ,−1, 𝑝𝑙 − 𝜖 + 1)

and therefore
P𝔩(−1, · · · ,−1, 𝑝𝑙 − 𝜖) = P𝔩(−1, · · · ,−1, 𝑝𝑙 + 𝜖) = 𝔩𝑙

Thus, by applying the typical squeezing argument from 29, we have that

P𝔩(−1, · · · ,−1, 𝑝𝑙 , · · · , 𝑝𝑚) = 𝔩𝑙

and therefore

Σ𝔩(−1, · · · ,−1, 𝑝𝑙 , · · · , 𝑝𝑚) = 𝔩(−1, · · · ,−1, 𝑝𝑙 + 1, · · · , 𝑝𝑚)

as claimed, which completes the proof of the rst case. �

The notation used in the above proposition might look a bit arcane. Together with the previous
proposition, it describes an algorithm to calculate the growth order of the partial sum of the
general growth order 𝔞 = 𝔩(𝑝0, · · · , 𝑝𝑚):

1. If 𝑝0 = 𝑝1 = · · · = 𝑝𝑚 = −1, then the growth order of Σ𝔞 is equal to 𝔩𝑚+1.

2. Otherwise, locate the rst value of 𝑝𝑖 which is not equal to −1. Say that this occurs at
𝑖 = 𝑙 , so that 𝑝𝑙 ≠ −1 and 𝑝𝑖 = −1 for all 𝑖 < 𝑙 .

3. If 𝑝𝑙 < −1, then Σ𝔞 is the constant growth order 1.

4. If 𝑝𝑙 > −1, then Σ𝔞 is equal to 𝔩𝑚+1𝔞.

This gives us, for instance, the following asymptotic formulae, among many others:

∞∑︁
𝑘=3

1
𝑘
√︁
log𝑘 log log𝑘

= Θ
(√︄ log𝑛

log log𝑛

)
∞∑︁
𝑘=16

√︁
log log𝑘

𝑘 log𝑘 3
√︁
log log log𝑘

= Θ
( (log log𝑘)3/2

3
√︁
log log log𝑘

)
Now that we know how to calculate the growth orders of nested log sums in general, we are
ready to prove that these are precisely the growth orders that appear inM.

Proposition 61. The elements of M are precisely the growth orders taking the form
𝔩(𝑝0, · · · , 𝑝𝑚), where 𝑝0, · · · , 𝑝𝑚 ∈ Z.
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Proof. Dene a function size on tuples of integers as follows:

size(𝑝0, · · · , 𝑝𝑚) = |𝑝0 | + 2|𝑝1 | + · · · + 2𝑚 |𝑝𝑚 |

Notice that this function has the following property: if 𝑝𝑙 > 0, then

size(0, · · · , 0, 𝑝𝑙 , · · · , 𝑝𝑚) > size(−1, · · · ,−1, 𝑝𝑙 − 1, · · · , 𝑝𝑚)

This fact will be important for proving our proposition using a modied type of induction on
tuples of integers.

Suppose we are given some 𝔩(𝑝0, · · · , 𝑝𝑚), with 𝑝0, · · · , 𝑝𝑚 ∈ Z not all equal to zero, which we
wish to show is an element ofM. Suppose that the sequence 𝑝0, · · · , 𝑝𝑚 begins with 𝑙 zeroes,
so that 𝑝𝑙 is the rst nonzero integer in the sequence, and

𝔩(𝑝0, · · · , 𝑝𝑚) = 𝔩(0, · · · , 0, 𝑝𝑙 , · · · , 𝑝𝑚)

If 𝑝𝑙 > 0, then we may write

𝔩(0, · · · , 0, 𝑝𝑙 , · · · , 𝑝𝑚) = Σ𝔩(−1, · · · ,−1, 𝑝𝑙 − 1, · · · , 𝑝𝑚)

as per our previously-derived general formula for sums of powers of nested logs. On the other
hand, if 𝑝𝑙 < 0, we have

𝔩(0, · · · , 0, 𝑝𝑙 , · · · , 𝑝𝑚) = RΣ𝔩(−1, · · · ,−1,−𝑝𝑙 − 1, · · · ,−𝑝𝑚)

However, notice that in the former case,

size(−1, · · · ,−1, 𝑝𝑙 − 1, · · · , 𝑝𝑚) < size(0, · · · , 0, 𝑝𝑙 , · · · , 𝑝𝑚)

and in the latter case,

size(−1, · · · ,−1,−𝑝𝑙 − 1, · · · ,−𝑝𝑚) < size(0, · · · , 0, 𝑝𝑙 , · · · , 𝑝𝑚)

Thus, in either case, we can express 𝔩(𝑝0, · · · , 𝑝𝑚) as the partial sum or the reciprocal of a partial
sum of 𝔩(𝑞0, · · · , 𝑞𝑚), where size(𝑞0, · · · , 𝑞𝑚) < size(𝑝0, · · · , 𝑝𝑚).

Since size only takes nonnegative integer values, we have that size(𝑞0, · · · , 𝑞𝑚) ≤ size(𝑝0, · · · , 𝑝𝑚)−
1. By repeatedly applying the above process, we decrease the size of the tuple of powers by
at least 1 at each step, meaning that we must eventually reach a tuple whose size equals zero.
The only such tuple is (0, · · · , 0). This means that 𝔩(𝑝0, · · · , 𝑝𝑚) can be expressed in terms of
𝔩(0, · · · , 0) = 1 by repeatedly applying the Σ and RΣ operators. However, sinceM contains 1
and is closed under Σ and RΣ, it must contain 𝔩(𝑝0, · · · , 𝑝𝑚) for any 𝑝0, · · · , 𝑝𝑚 ∈ Z.

We have shown that M contains all 𝔩(𝑝0, · · · , 𝑝𝑚) for 𝑝0, · · · , 𝑝𝑚 ∈ Z, and now we just need to
show that it only contains growth orders of this form. Clearly M only contains growth orders
of this form, since it consists of power functions 𝔫𝑝0 = 𝔩(𝑝0) with 𝑝0 ∈ Z. However, 60 shows
that if 𝔞 takes the form 𝔞 = 𝔩(𝑝0, · · · , 𝑝𝑚) with 𝑝0, · · · , 𝑝𝑚 ∈ Z, then Σ𝔞 and RΣ𝔞 also take this
form. It follows inductively that all elements of M𝑖 take this form for each 𝑖 ∈ N, and therefore
all elements ofM take this form as well. �
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This proposition demonstrates that the nested-logarithm growth orders with integer powers are,
in some sense, fundamental to the study of partial sums of sequences: M consists of precisely
these growth orders, and every SR-closed set containsM.

Exercise 8 Show that, for all𝑚 ∈ N, we have that 𝔩𝑚 ∈ M𝑖 for some 𝑖 ≤ 2𝑚+1.

Exercise 9 For each of the following "seed sets" G, show that G is SR-regular, and characterize
the growth orders contained in G:

• G = {𝔫1/2}

• G = {𝔫1/3, 𝔫2/3}

• G = {𝔫1/5, 𝔫4/5}

• G = {𝔫2/5, 𝔫3/5}

• G = {𝔩1/2, 𝔫𝔩1/2}

6.4. Other operations

We’ve gured out how to construct a set G that is closed under partial sums and reciprocals
while still possessing trichotomy (and, in fact, the stronger monotone quotient property). This
makes G a very agreeable setting for doing analysis, but in an ideal microcosm of SR+/∼,
these are not all the operations we’d like to be able to perform. We’re missing one signicant
operation, namely multiplication. By choosing a suitable G, can we guarantee that G is closed
not only under partial sums and reciprocals, but also products?

We will start o slowly by showing that G is closed under multiplication and division by 𝔫. But
rst, we need the following lemma:

Proposition 62. If G is SR-regular and 𝔞/𝔫𝑝 is monotone for all 𝔞 ∈ G and 𝑝 ∈ R, then
𝔞/𝔫𝑝 is also monotone for all 𝔞 ∈ G and 𝑝 ∈ R.

Proof. We complete this proof by induction. Suppose that 𝔞/𝔫𝑝 is monotone for all 𝔞 ∈ G𝑖 and
all 𝑝 ∈ R. Then, by 29, we have that Σ𝔞/Σ𝔫𝑝 is monotone. Since Σ𝔫𝑝 = 𝔫𝑝+1 for all 𝑝 > −1, we
have that Σ𝔞/𝔫𝑞 is monotone for all 𝑞 > 0. We also have that Σ𝔞/𝔫𝑞 is monotone for 𝑞 ≤ 0
because both Σ𝔞 and 1/𝔫𝑞 are monotone increasing. Thus, Σ𝔞/𝔫𝑞 is monotone for all 𝑞 ∈ R,
and additionally RΣ𝔞/𝔫𝑞 is monotone for all 𝑞 ∈ R, since it is the reciprocal of a monotone
growth order. Since all elements 𝔟 ∈ G𝑖+1 take the form Σ𝔞 or RΣ𝔞 for some 𝔞 ∈ G𝑖 , we have
that 𝔟/𝔫𝑝 is monotone for all 𝔟 ∈ G𝑖+1 and 𝑝 ∈ R.

Since 𝔞/𝔫𝑝 is monotone for all 𝔞 ∈ G0 and 𝑝 ∈ R by hypothesis (the base case), we have that
𝔟/𝔫𝑝 is monotone for all 𝔟 ∈ G𝑖 for all 𝑖 ∈ N, and therefore this holds for all 𝔟 ∈ G and all
𝑝 ∈ R. �
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Exercise 10 Strengthen the above result by proving the statement in which 𝑝 ∈ R is replaced
by 𝑝 ∈ 𝐴, where 𝐴 ⊂ R is any additive subgroup of R containing 1.

Exercise 11 Find a growth order 𝔞 such that 𝔞/𝔫𝑝 is monotone for all 𝑝 ∈ Q but not for all
𝑝 ∈ R.

Now we are ready to prove the following modest result.

Proposition 63. Let G be a moderate and monotone SR-regular set such that 𝔞/𝔫𝑝 is
monotone for all 𝑝 ∈ R. If 𝔟 ∈ G𝑖 , then 𝔫𝔟, 𝔫−1𝔟 ∈ G𝑖+1, for all 𝑖 ∈ N.

Proof. Let 𝔟 ∈ G𝑖 . Without loss of generality, suppose that 𝔟 ≥ 1 (for if 𝔟 ≤ 1, we may apply
the same line of reasoning to 𝔟−1 ≥ 1). Then 𝔟 = Σ𝔞 for some 𝔞 ∈ G𝑖−1. We clearly have that
Σ𝔟 = Σ2𝔞 = 𝔫Σ𝔞 = 𝔫𝔟, meaning that 𝔫𝔟 ∈ G𝑖+1. Now we just need to prove that 𝔟/𝔫 ∈ G𝑖+1.

Suppose that 𝔞 ≥ 𝔫𝑝 for some 𝑝 ∈ (−1, 0). Then 𝔞/𝔫𝑝 is monotone by hypothesis and the
above lemma. Further, since 𝔞 is moderate, we have that 𝔞 ≤ 𝔫𝑞 for some 𝑞 ∈ R, and 𝔞/𝔫𝑞
is also monotone. Since P𝔫𝑘 = 𝔫−1 for all 𝑘 > −1, we may deploy the "squeezing" argument
outlined in a previous section to argue that Σ𝔞 = 𝔫𝔞. In this case, we simply have 𝔞 = 𝔟/𝔫, and
𝔞 ∈ G𝑖−1 ⊂ G𝑖+1.

Now suppose that it is not the case that 𝔞 ≥ 𝔫𝑝 for some 𝑝 ∈ (−1, 0). Since 𝔞/𝔫𝑝 is monotone
for all 𝑝 ∈ R, we have that 𝔞 is comparable to 𝔫𝑝 for all 𝑝 ∈ R, implying that 𝔞 < 𝔫𝑝 for all
𝑝 ∈ (−1, 0). This means that Σ𝔞 ≤ 𝔫𝑝+1 and RΣ𝔞 ≥ 𝔫−𝑝−1 for all 𝑝 ∈ (−1, 0), so that, taking
𝑝 = −1/2, we have RΣ𝔞 ≥ 𝔫−1/2. Finally, since P𝔫𝑘 = 𝔫−1 for all 𝑘 > −1 and RΣ𝔞 ≤ 𝔫𝑞 for
some 𝑞 ∈ R by moderateness, we may deploy the "squeezing" argument again to deduce that
ΣRΣ𝔞 = 𝔫RΣ𝔞 = 𝔫/Σ𝔞. This means that RΣRΣ𝔞 = Σ𝔞/𝔫 = 𝔟/𝔫. Since 𝔞 ∈ G𝑖−1, we have that
𝔟/𝔫 = (RΣ)2𝔞 ∈ G𝑖+1.

In any case, we have that 𝔫𝔟 and 𝔟/𝔫 are both elements ofG𝑖+1, and the proposition is proven. �

6.5. SR-operators in general

Denition 25. A SR-operator on S(R+)/∼ is dened as a composition of nitely many
(or zero) Σ and R operators. That is, the identity function on S(R+)/∼ is an SR-operator,
and ΣΦ and RΦ are SR-operators whenever Φ is an SR-operator.

Denition 26. If Φ is an SR-operator, say that it is even if it equals a composition and Σ
and R containing an even number of instances of R, and odd if it equals a composition of Σ
and R containing an odd number of instances of R.
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Proposition 64. If Φ is an SR-operator and 𝔞/𝔟 is monotone, then Φ𝔞/Φ𝔟 is also monotone.

Proof. This is a simple proof by induction. Every SR-operator Φ can be written as a string of Σ
and R, and can therefore be related to a simpler SR-operator via one of the two equationsΦ = ΣΦ′

or Φ = RΦ′. Therefore, if we prove that the validity of the proposition for Φ′ implies its validity
for both ΣΦ′ and RΦ′, we have that it holds in general by induction. ButΦ′𝔞/Φ′𝔟 beingmonotone
implies that ΣΦ′𝔞/ΣΦ′𝔟 is monotone by 29, and it also implies that (Φ′𝔞/Φ′𝔟)−1 = RΦ′𝔞/RΦ′𝔟
is monotone. Thus, the desired result follows by induction. �

Proposition 65. If Φ is an even SR-operator, then

𝔞 ≤ 𝔟 =⇒ 𝔞

Φ𝔞
≤ 𝔟

Φ𝔟

Proof. Notice that if Φ is an even SR-operator, so that it can be written as a string of Σ and
R with an even number of occurrences of R, then it can be expressed in terms of a simpler
SR-operator Φ′ in one of the following 3 ways:

1. Φ = ΣΦ′

2. Φ = Φ′Σ

3. Φ = RΦ′R

Therefore, we can prove our proposition by induction on the length of strings of Σ and R. If we
show that the proposition holds for Φ in either of the above 3 cases given that it holds for Φ′,
then it holds for SR-operators in general by induction.

So suppose that the proposition holds for Φ′, so that for any 𝔞 ≤ 𝔟 with 𝔞/𝔟 monotone, we have
that

𝔞

Φ′𝔞
≤ 𝔟

Φ′𝔟

or, equivalently,
𝔞

𝔟
≤ Φ′𝔞

Φ′𝔟

Further, by the previous proposition, we have that the ratio Φ′𝔞/Φ′𝔟 is monotone.

In the rst case, if Φ = ΣΦ′, we have that 𝔞 ≤ 𝔟 implies Φ′𝔞 ≤ Φ′𝔟 by assumption, with Φ′𝔞/Φ′𝔟
monotone. This means that, by 4.3, we have PΦ′𝔞 ≤ PΦ′𝔟, which is equivalent to

Φ′𝔞

Φ′𝔟
≤ ΣΦ′𝔞

ΣΦ′𝔟

and therefore
𝔞

𝔟
≤ ΣΦ′𝔞

ΣΦ′𝔟
=
Φ𝔞

Φ𝔟
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or equivalently
𝔞

Φ𝔞
≤ 𝔟

Φ𝔟

which proves the proposition for Φ when Φ = ΣΦ′, in the rst case.

Now consider the second case, in which Φ = Φ′Σ. If 𝔞 ≤ 𝔟 with 𝔞/𝔟 monotone, then we have
that Σ𝔞 ≤ Σ𝔟 with Σ𝔞/Σ𝔟 monotone by 4.3, and further

𝔞

𝔟
≤ Σ𝔞

Σ𝔟

by 4.3. Since the proposition was assumed to be true for Φ′, we therefore have that

Σ𝔞

Σ𝔟
≤ Φ′(Σ𝔞)

Φ′(Σ𝔟) =
Φ𝔞

Φ𝔟

and therefore
𝔞

𝔟
≤ Φ𝔞

Φ𝔟

or equivalently
𝔞

Φ𝔞
≤ 𝔟

Φ𝔟

which proves the proposition for Φ when Φ = Φ′Σ, completing the inductive step for the second
case.

Finally, consider the third case, in which Φ = RΦ′R. Assume again that the proposition holds for
Φ′. If 𝔞 ≤ 𝔟 are such that 𝔞/𝔟 is monotone, then we have that R𝔟 ≤ R𝔞, and R𝔟/R𝔞 = (𝔞/𝔟)−1 is
monotone. By assumption, we have that

R𝔟
Φ′R𝔟 ≤ R𝔞

Φ′R𝔞

which, by inverting both sides of the inequality, is equivalent to

𝔞

RΦ′R𝔟 ≤ 𝔟

RΦ′R𝔟
or

𝔞

Φ𝔟
≤ 𝔟

Φ𝔟

which completes the proof in the third case, in which Φ takes the form Φ = RΦ′R.

Since the base case inwhichΦ is the identity operator holds trivially, we have that the proposition
holds in general by induction on the complexity of strings of Σ and R. �

Additionally, because every odd SR-operator can be written in the form RΦ′ for some even
SR-operator Φ′, the above proposition implies the following corollary:
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Proposition 66. If Φ is an odd SR-operator, then

𝔞 ≤ 𝔟 =⇒ 𝔟

Φ𝔟
≤ 𝔞

Φ𝔞

We may now prove the following proposition, which makes it incredibly easy to compare the
outputs of SR-operators:

Proposition 67. If 𝔞 = ΦΣ𝔞′ and 𝔟 = ΦRΣ𝔟′ for some growth orders 𝔞, 𝔞′, 𝔟, 𝔟′ and
SR-operator Φ, then 𝔞/𝔟 is monotone. Additionally, if Φ is even, then 𝔞 ≥ Φ1 ≥ 𝔟, whereas
if Φ is odd, then 𝔞 ≤ Φ1 ≤ 𝔟.

Proof. Suppose the growth orders 𝔞, 𝔞′, 𝔟, 𝔟′ satisfy

𝔞 = ΦΣ𝔞′

𝔟 = ΦRΣ𝔟′

for some SR-operator Φ. Notice that Σ𝔞′ ≥ 1 and Σ𝔞′/1 = Σ𝔞′ is monotone. This implies that
ΦΣ𝔞′/Φ1 = 𝔞/Φ1 is monotone by 64. Further, we have that 𝔞 ≥ Φ1 if Φ is even and 𝔞 ≤ Φ1 if Φ
is odd.

Similarly, we have that RΣ𝔟′ ≤ 1 and RΣ𝔟′/1 = RΣ𝔟′ is monotone. This again means that
ΦRΣ𝔟′/Φ1 = 𝔟/Φ1 is monotone, and further that 𝔟 ≤ Φ1 if Φ is even and 𝔟 ≥ Φ1 if Φ is odd.

Hence, if Φ is even, then the growth orders 𝔞/Φ1 and Φ1/𝔟 are both monotone and ≥ 1, meaning
that their product is monotone and ≥ 1, so that (𝔞/Φ1) (Φ1/𝔟) = 𝔞/𝔟 is monotone and ≥ 1, and
therefore 𝔞 ≥ 𝔟. On the other hand, if Φ is odd, then both 𝔞/Φ1 and Φ1/𝔟 are monotone and
≤ 1, so that their product 𝔞/𝔟 is monotone and ≤ 1, and additionally 𝔞 ≤ 𝔟. Thus follows the
claimed proposition. �

6.6. Monoid structure

The SR-operators, together with the identity transformation on growth orders I, have the
structure of a monoid under the binary operation of composition. Since an SR-operator is
dened to be a nite composition of Σ and R, we have that this monoid is generated by the
operators Σ and R. So far we have only considered the action of the SR-operators on S(R+)/∼,
but we can also consider the structure of the monoid that they give rise to. In particular, a
natural question to ask is whether we can give a concise description of this monoid without
making reference to S(R+)/∼, perhaps by nding a monoid presentation, i.e. a set of relations
between the generators Σ and R from which the entire structure of the monoid can be deduced.

The rst step in searching for a presentation for this monoid would be to nd nontrivial relations
that hold between Σ and R. For instance, the most basic relation is

R2 = I
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which is true because R2𝔞 = (𝔞−1)−1 = 𝔞 for any growth order 𝔞.

This is not the only nontrivial relation between Σ and R. We also have the following relation:

RΣRΣ3 = ΣRΣ3

Why is this the case? If 𝔞 is an arbitrary growth order, we have that Σ𝔞 ≥ 1, from which we
have that Σ3𝔞 ≥ 𝔫2 and therefore RΣ3𝔞 ≤ 𝔫−2. Since the partial sums of any sequence with a
growth order less than or equal to 𝔫−2 must converge, we have that ΣRΣ3𝔞 = 1 for any growth
order 𝔞, and thence follows the above relation. By similar reasoning, we also have the following
relations:

ΣRΣ3Σ = ΣRΣ3

ΣRΣ3R = ΣRΣ3

As it happens, these are not the only nontrivial relations.

Let us dene a sequence of SR-operators Λ𝑚 as follows. Let Λ0 = I and

Λ𝑚+1 = ΣRΣΛ𝑚Λ𝑚−1 · · ·Λ0R

for all𝑚 ≥ 0. It can be proven by induction that each operator Λ𝑚 is even, and that

Λ𝑚1 = 𝔩𝑚

for all𝑚 > 0.

6.7. Exponential extensions

We have seen how to use SR-regularity to construct chains of growth orders with certain
favorable properties, such as moderateness, the monotone-quotient property, and SR-closure.
Some of them, such as M, incidentally have other advantageous properties such as closure
under products. Now we will derive a way of "extending" chains with these properties to
obtain larger chains containing a large variety of growth orders and sharing the same favorable
properties.

In some ways, what we will do is analogous to the idea of a eld extension. Given a eld such
as Q, some equations like 4𝑥2 − 1 = 0 will have solutions, while other equations like 𝑥2 − 2 = 0
will not have any solutions. We might want to construct a larger eld containing Q but which
also contains a solution to the equation 𝑥2 − 2 = 0, without disrupting the eld structure. This
the motivation behind the construction of the eld Q(

√
2). In our case, we will be considering

equations of the form
P𝔵 =

𝔵

Σ𝔵
= 𝔞

to be solved for 𝔵, where 𝔞 ∈ G is some given growth order in a chain 𝔤. If, for instance, G = M,
and 𝔞 = (𝔫𝔩)−1, then 𝔵 = 𝔫−1 would be a solution to this equation. However, this equation does
not have solutions for all values of 𝔞 ∈ 𝑀 , for instance 𝔞 = 𝔫−1/2, 𝔞 = 1, 𝔞 = 𝔫, or 𝔞 = (𝔫

√
𝔩)−1.
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A natural question is whether we can nd extensions of M in which these equations have
solutions, and which share the favorable properties of moderateness, monotone quotients,
SR-regularity, and SR-closure (and even closure under products). Clearly this is impossible for
some values of 𝔞. For instance, the equation P𝔵 = 𝔫 cannot have any solutions in any extension,
because this would mean that Σ𝔵 = 𝔫𝔵 > 𝔵, which is not the case for any growth order. To
consider another example, the equation P𝔵 = 𝔵 does have some solutions, such as 𝔵 = [2𝑛], but
none of these solutions are moderate, for we have proven that Σ𝔵 ≥ 𝔫𝔵 for all moderate growth
orders 𝔵. (By similar reasoning, P𝔵 = 𝔫−1 also cannot have any moderate solutions.) This means
that adjoining any solutions of this equation toM would destroy its moderateness property.
To continue the analogy with eld extensions, this would be like trying to adjoin a solution to
equations like 𝑥 = 𝑥 + 1 to Q - doing this would necessarily violate the eld laws.

But what about the equation P𝔵 = (𝔫
√
𝔩)−1? We cannot rule out the existence of a solution to

this equation for any of the above reasons, although we know that no such solution exists inM
because we have already completely classied its elements and their partial sums. The theorem
35 allows us to actually construct such a growth order, however:

𝑛∑︁
𝑘=2

𝑒
√
log𝑘

𝑘
√︁
log𝑘

= Θ
(
𝑒
√
log𝑛 )

which tells us that Σ𝔵 = 𝔵𝔫
√
𝔩, and therefore P𝔵 = (𝔫

√
𝔩)−1, if 𝔵 is the growth order of

(𝑒
√
log𝑛/𝑛

√︁
log𝑛). Can we nd some way of augmentingM so that it contains this new growth

order, while preserving all of its desirable properties?

The following proposition guarantees that moderateness would be preserved when adding
not only the above growth order, but also any growth order of the form [𝑒Σ𝛽 ], where 𝛽 is any
monotone decreasing sequence with "suciently fast decay" (e.g. with growth order (𝔫

√
𝔩)−1):

Proposition 68. If 𝔟 ≤ 𝔫−1 and 𝛽 ∈ 𝔟 is monotone decreasing, then [𝑒Σ𝛽 ] is a moderate
growth order.

Proof. Let 𝛽 = (𝑏𝑛) ∈ 𝔟 be as stated in the proposition, and let (𝑐𝑛) = Σ𝑒𝛽 . Further, let𝑚,𝑛 ∈ N
be such that 𝑛 ≤ 𝑚 ≤ 2𝑛. Since 𝔟 ≤ 𝔫−1, there exists a constant 𝐶 such that 𝑏𝑛 ≤ 𝐶/𝑛 for all
𝑛 ∈ N. Then we have that

𝑚∑︁
𝑘=𝑛+1

𝑏𝑘 ≤
2𝑛∑︁

𝑘=𝑛+1

2𝑛∑︁
𝑘=𝑛+1

𝐶

𝑘
≤

2𝑛∑︁
𝑘=𝑛+1

𝐶

𝑛
= 𝐶

which means that

exp
( 𝑛∑︁
𝑘=1

𝑏𝑘

)
≤ exp

( 𝑚∑︁
𝑘=1

𝑏𝑘

)
≤ 𝑒𝐶 · exp

( 𝑛∑︁
𝑘=1

𝑏𝑘

)
and therefore we have that 𝑒Σ𝛽 is of moderate growth order, as claimed. �
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Proposition 69. Suppose 𝔞/𝔟 > 1 is monotone with (𝑎𝑛) ∈ 𝔞, (𝑏𝑛) ∈ 𝔟 arbitrary. Then,
for any constant𝑀 > 0, there exists 𝑁 ∈ N such that 𝑎𝑛/𝑏𝑛 > 𝑀 for all 𝑛 ≥ 𝑁 .

Proof. Let (𝑎𝑛) ∈ 𝔞, (𝑏𝑛) ∈ 𝔟 be as stated above, and let (𝑟𝑛) ∈ 𝔞/𝔟 be a monotone sequence.
Since (𝑟𝑛) is monotone and has a growth order strictly greater than 1, we have that for any
constant > 0, there exists 𝑁 ∈ N such that 𝑟𝑛 exceeds the value of that constant for all 𝑛 ≥ 𝑁 .
Additionally, since (𝑟𝑛) ∼ (𝑎𝑛/𝑏𝑛), we have that 𝑎𝑛/𝑏𝑛 ≥ 𝐶𝑟𝑛 for all 𝑛, for some 𝐶 > 0. We may
therefore let 𝑁 ∈ N be such that 𝑟𝑛 > 𝑀/𝐶 for all 𝑛 ≥ 𝑁 , and consequently 𝑎𝑛/𝑏𝑛 ≥ 𝑀 for all
𝑛 ≥ 𝑁 , as claimed. �

Proposition 70. Let G be a monotone, moderate and SR-regular set that is closed under
quotients. Further let 𝔟 ∈ G be < 𝔫−1 and have the property that there exists no 𝔠 ∈ G with
𝔠/Σ𝔠 = 𝔟. Then, if 𝛽 ∈ 𝔟, for all 𝔞 ∈ G, the ratio [𝑒Σ𝛽 ]/𝔞 is monotone.

Proof. Let 𝔞 ∈ G be arbitrary. Since G is SR-regular, we have that either 𝔞 = Σ𝔞′ or 𝔞 = (Σ𝔞′)−1
for some 𝔞′ ∈ G. If the latter is true, then we trivially have that the ratio [𝑒Σ𝔟]/𝔞 is monotone,
since [𝑒Σ𝔟] is monotone increasing and 1/𝔞 is monotone increasing.

Suppose instead that 𝔞 = Σ𝔞′. Since G is closed under quotients, we have that 𝔞′/Σ𝔞′ = 𝔞′/𝔞 is
in G, and it therefore has a monotone ratio with 𝔟. We will consider two cases: either 𝔟/(𝔞′/𝔞)
is monotone increasing and > 1, or it is monotone decreasing and < 1, for by assumption it
cannot be = 1.

Suppose rst that 𝔟/(𝔞′/𝔞) is monotone increasing and > 1. Let 𝛼 ′ = (𝑎′𝑛) ∈ 𝔞′ be an arbitrary
sequence of growth order 𝔞′, and let 𝛼 = (𝑎𝑛) = Σ𝛼 ′ ∈ 𝔞. By the previous lemma, and by
moderateness, for any𝑀 > 0, the sequence 𝑏𝑛+1/(𝑎′𝑛+1/𝑎𝑛) eventually exceeds𝑀 (for all 𝑛 ≥ 𝑁

with 𝑁 ∈ N). Notice, however, that if we x some𝑀 ≥ 1, we have

1 ≤ 1 + 𝑏𝑛+1
1 + 𝑎′

𝑛+1
𝑎𝑛

≤ 𝑏𝑛+1
𝑎′
𝑛+1/𝑎𝑛

for all 𝑛 ≥ 𝑁 by the mediant inequality, meaning that the quotient in the middle of the inequality
exceeds 1 for all 𝑛 ≥ 𝑁 . Since 𝑒ℎ ≥ 1 + ℎ for all ℎ ∈ R, we have that

𝑒𝑏𝑛+1

1 + 𝑎′
𝑛+1
𝑎𝑛

≥ 1

for all 𝑛 ≥ 𝑁 , or
𝑒𝑏𝑛+1∑𝑛+1
𝑘=1 𝑎

′
𝑘∑𝑛

𝑘=1 𝑎
′
𝑘

=
𝑒𝑏𝑛+1

𝑎𝑛+1/𝑎𝑛
≥ 1

for all 𝑛 ≥ 𝑁 . But this expression is the ratio between consecutive terms of the sequence
𝑒𝛽/𝛼 . Since this ratio is greater than 1 for all 𝑛 ≥ 𝑁 , it follows that the sequence is monotone
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increasing for all 𝑛 ≥ 𝑁 , and therefore its growth order [𝑒𝛽 ]/𝔞 is monotone increasing as
desired.

Next consider the case in which 𝔟/(𝔞′/𝔞) is monotone decreasing, and dene 𝛼 ′ and 𝛼 as before.
By the previous lemma and by moderateness once more, we have that for any 𝜖 > 0, the
sequence (𝑏𝑛+1 + 𝑏2𝑛+1)/(𝑎′𝑛+1/𝑎𝑛) is eventually less than 𝜖 for all 𝑛 ≥ 𝑁 , for some 𝑁 ∈ N. (We
are using the fact that (𝑏𝑛+1 + 𝑏2𝑛+1) also has growth order 𝔟.) Using the mediant inequality
again, if we x some positive 𝜖 < 1, this means that

𝑏𝑛+1 + 𝑏2𝑛+1
𝑎′
𝑛+1/𝑎𝑛

≤
1 + 𝑏𝑛+1 + 𝑏2𝑛+1

1 + 𝑎′
𝑛+1
𝑎𝑛

≤ 1

for all 𝑛 ≥ 𝑁 . Now, notice that 𝑒𝑥 ≤ 1 + 𝑥 + 𝑥2 for all suciently small 𝑥 , meaning that since
𝑏𝑛+1 tends to zero, we have that 𝑒𝑏𝑛+1 ≤ 1 + 𝑏𝑛+1 + 𝑏2𝑛+1 for all 𝑛 ≥ 𝑁 ′, for some 𝑁 ′ ∈ N. This
means that

𝑒𝑏𝑛+1

1 + 𝑎′
𝑛+1
𝑎𝑛

≤
1 + 𝑏𝑛+1 + 𝑏2𝑛+1

1 + 𝑎′
𝑛+1
𝑎𝑛

≤ 1

for all 𝑛 ≥ max(𝑁, 𝑁 ′). But this means that

𝑒𝑏𝑛+1∑𝑛+1
𝑘=1 𝑎

′
𝑘∑𝑛

𝑘=1 𝑎
′
𝑘

=
𝑒𝑏𝑛+1

𝑎𝑛+1/𝑎𝑛
≤ 1

and the LHS is the ratio between consecutive terms of the sequence 𝑒𝛽/𝛼 . Since these ratios
are less than 1 for all 𝑛 ≥ max(𝑁, 𝑁 ′), the sequence must be monotone decreasing for all 𝑛
above this threshold, and therefore the growth order [𝑒𝛽 ]/𝔞 is monotone decreasing as claimed,
completing our proof. �

We have the following corollary of the above proof:

Proposition 71. Let G be a monotone, moderate and SR-regular set that is closed under
quotients. Further let 𝔟 ∈ G be < 𝔫−1 and have the property that there exists no 𝔠 ∈ G with
𝔠/Σ𝔠 = 𝔟, and let 𝛽 ∈ 𝔟. For all 𝔞 ∈ G, either [𝑒Σ𝛽 ]𝑝/𝔞 is monotone increasing for all 𝑝 > 0,
or monotone decreasing for all 𝑝 > 0.
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Proposition 72. Let G be a moderate monotone-quotient SR-regular and SR-closed set
that is closed under quotients. Let 𝔟, 𝔤 ∈ G and let 𝛽 ∈ 𝔟 be monotone decreasing such that
𝔟 < 𝔫−1 and Σ𝔟 > 1, and such that there exists no growth order 𝔠 ∈ G with 𝔠/Σ𝔠 = 𝔟.
Then if

𝔞 = Σ(𝔤 · 𝔟 · [𝑒Σ𝛽 ]𝑝)

we have that
1. If 𝔤 = Σ𝔤′ and 𝔤′/𝔤 < 𝔟, then 𝔞 = 𝔤 · [𝑒Σ𝛽 ]𝑝 if 𝑝 > 0 and 𝔞 = 1 if 𝑝 < 0.
2. If 𝔤 = (Σ𝔤′)−1 and 𝔤′/𝔤−1 < 𝔟, then 𝔞 = 𝔤 · [𝑒Σ𝛽 ]𝑝 if 𝑝 > 0 and 𝔞 = 1 if 𝑝 < 0.
3. If 𝔤 = Σ𝔤′ and 𝔤′/𝔤 > 𝔟, then 𝔞 = Σ(𝔤 · 𝔟) · [𝑒Σ𝛽 ]𝑝 .
4. If 𝔤 = (Σ𝔤′)−1 and 𝔤′/𝔤−1 > 𝔟, then 𝔞 = 1.

Proof. First let us consider case (1) with 𝑝 > 0. From the proofs of the previous propositions,
we have that if 𝔤′/𝔤 < 𝔟, then 𝔤 < [𝑒Σ𝛽 ]𝑞 for all 𝑞 > 0. This means that, for instance,

𝔟 · [𝑒Σ𝛽 ]𝑝 ≤ 𝔤 · 𝔟 · [𝑒Σ𝛽 ]𝑝 ≤ 𝔟 · [𝑒Σ𝛽 ]2𝑝

where there is a monotone ratio between any two of these growth orders. However, by 34, we
know that

P(𝔟 · [𝑒Σ𝛽 ]𝑝) = P(𝔟 · [𝑒Σ𝛽 ]2𝑝)𝔟

and therefore, using 29 and a squeezing argument, we have that

P(𝔤 · 𝔟 · [𝑒Σ𝛽 ]𝑝) = 𝔟

and therefore
𝔞 = Σ(𝔤 · 𝔟 · [𝑒Σ𝛽 ]𝑝) = 𝔤 · [𝑒Σ𝛽 ]𝑝

as claimed. If, on the other hand, 𝑝 < 0, then we have that

𝔤 · 𝔟 · [𝑒Σ𝛽 ]𝑝 ≤ 𝔟 · [𝑒Σ𝛽 ]𝑝/2

and the latter growth order has convergent partial sums, by 34, so the former must as well,
meaning that 𝔞 = 1. Thus follows the claim for the case of 𝑝 < 0.

Now let us consider case (2) - the proof will be very similar. Suppose rst that 𝑝 > 0. This time,
we have that since 𝔤′/𝔤−1, it follows that 𝔤 > [𝑒Σ𝛽 ]𝑞 for all 𝑞 < 0. This means that

𝔟 · [𝑒Σ𝛽 ]𝑝/2 ≤ 𝔤 · 𝔟 · [𝑒Σ𝛽 ]𝑝 ≤ 𝔟 · [𝑒Σ𝛽 ]𝑝

where any two of these growth orders has a monotone ratio. By 34, we have that

P(𝔟 · [𝑒Σ𝛽 ]𝑝/2) = P(𝔟 · [𝑒Σ𝛽 ]𝑝) = 𝔟

and therefore by the same squeezing argument, we have

P(𝔤 · 𝔟 · [𝑒Σ𝛽 ]𝑝) = 𝔟
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and thus
𝔞 = Σ(𝔤 · 𝔟 · [𝑒Σ𝛽 ]𝑝) = 𝔤 · [𝑒Σ𝛽 ]𝑝

as claimed. Once again, if 𝑝 < 0, we have that

𝔤 · 𝔟 · [𝑒Σ𝛽 ]𝑝 ≤ 𝔟 · [𝑒Σ𝛽 ]𝑝

and the latter has convergent sums, meaning that the former does as well, so 𝔞 = 1 and the
second part of case (2) follows.

Next, we shall prove the claim for case (3). Because 𝔤′/𝔤 > 𝔟, we have by 31 and the fact that
Σ𝔟 > 1 that Σ(𝔤′/𝔤) > Σ𝔟, or 𝔩 ◦ 𝔤 > Σ𝔟. But this means that 𝔤 > [𝑒Σ𝛽 ]𝑞 for all 𝑞 > 0. This
implies that

Σ(𝔤 · 𝔟) ≥ Σ( [𝑒Σ𝛽 ]𝑞 · 𝔟) = [𝑒Σ𝛽 ]𝑞

for all 𝑞 > 0, with a monotone quotient. From this inequality, we have that

𝔤 · 𝔟√︁
Σ(𝔤 · 𝔟)

≤ 𝔤 · 𝔟 · [𝑒Σ𝛽 ]𝑝 ≤ 𝔤 · 𝔟 · Σ(𝔤 · 𝔟)

with monotone quotients. However, the growth orders on the left and the right both have a
sigma ratio equal to 𝔤 ·𝔟/Σ(𝔤 ·𝔟) by 34 and moderateness. Thus, by 29, we have that 𝔤 ·𝔟 · [𝑒Σ𝛽 ]𝑝
has the same sigma ratio, meaning that

𝔞 = Σ(𝔤 · 𝔟 · [𝑒Σ𝛽 ]𝑝) = Σ(𝔤 · 𝔟) · [𝑒Σ𝛽 ]𝑝

completing our proof of case (3).

Finally, we shall turn to case (4). Using the same line of reasoning as case (3), since 𝔤′/𝔤−1 > 𝔟,
we have again that Σ(𝔤′/𝔤−1) = 𝔩 ◦ 𝔤−1 > Σ𝔟, and therefore 𝔤−1 > [𝑒Σ𝛽 ]𝑞 for all 𝑞 > 0, or
𝔤 < [𝑒Σ𝛽 ]𝑞 for all 𝑞 < 0. This means that

Σ(𝔤 · 𝔟 · [𝑒Σ𝛽 ]𝑝) ≤ Σ(𝔟 · [𝑒Σ𝛽 ]min(−2,𝑝) ) = 1

and therefore, since 𝔞 can be no smaller than 1, we have that

𝔞 = Σ(𝔤 · 𝔟 · [𝑒Σ𝛽 ]𝑝) = 1

as claimed. �

Proposition 73. Let G be a moderate monotone-quotient SR-regular and SR-closed set that
is closed under quotients. Further let 𝔟, 𝔤 ∈ G and let 𝛽 ∈ 𝔟 be monotone decreasing such
that 𝔟 < 𝔫−1 and Σ𝔟 > 1, and such that there exists no growth order 𝔠 ∈ G with 𝔠/Σ𝔠 = 𝔟.
Then, for any given 𝑝 ∈ R, there exists a growth order 𝔞 ∈ G such that either

Σ𝔞 = 𝔤 · [𝑒Σ𝛽 ]𝑝

or
(Σ𝔞)−1 = 𝔤 · [𝑒Σ𝛽 ]𝑝
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Proof. By the SR-regularity of G, there exists 𝔤′ ∈ G such that either 𝔤 = Σ𝔤′ or 𝔤 = (Σ𝔤′)−1. If
𝔤′/𝔤 < 𝔟 or 𝔤′/𝔤−1 < 𝔟 (depending on which is the case), then we have that setting

𝔞 = 𝔤 · 𝔟 · [𝑒Σ𝛽 ]𝑝

gives Σ𝔞 = 𝔤 · [𝑒Σ𝛽 ]𝑝 for 𝑝 > 0, by the previous proposition. If, on the other hand, 𝑝 < 0, we
may let

𝔞 = 𝔤−1 · 𝔟 · [𝑒Σ𝛽 ]−𝑝

so that we have (Σ𝔞)−1 = 𝔤 · [𝑒Σ𝛽 ]𝑝 by the previous proposition. Therefore, the theorem holds
for the case in which 𝔤′/𝔤 < 𝔟 or 𝔤′/𝔤−1 < 𝔟, and we need only consider the case in which
𝔤′/𝔤 > 𝔟 or 𝔤′/𝔤−1 > 𝔟. (It is not possible for 𝔤′/𝔤 to exactly equal 𝔟, by hypothesis.)

Consider now the case in which 𝔤 = Σ𝔤′ and 𝔤′/𝔤 > 𝔟. We may equivalently write this inequality
as 𝔤′/𝔟 > 𝔤. Since 𝔤 ≥ 1, we have that 𝔤′/𝔟 > 1, and therefore by SR-regularity of G, we
have that 𝔤′/𝔟 = Σ𝔤′′ for some 𝔤′′ ∈ G. Since Σ𝔤′′ = 𝔤′/𝔟 > 𝔤 = Σ𝔤′, we have that 𝔤′′ > 𝔤′

(for the two growth orders must be comparable, and if 𝔤′′ ≤ 𝔤′ were true, it would follow that
Σ𝔤′′ ≤ Σ𝔤′, which is not the case). Now, by 29, we have that P𝔤′′ ≥ P𝔤′, implying that

𝔤′′

𝔤′/𝔟 =
𝔤′′

Σ𝔤′′
≥ 𝔤′

Σ𝔤′
=
𝔤′

𝔤
> 𝔟

Therefore, by the previous proposition, we have that if we let

𝔞 = (𝔤′/𝔟) · 𝔟 · [𝑒Σ𝛽 ]𝑝 = 𝔤′ · [𝑒Σ𝛽 ]𝑝

it would follow that Σ𝔞 = 𝔤 · [𝑒Σ𝛽 ]𝑝 , proving the proposition for this case.

For the nal case in which 𝔤 = (Σ𝔤′)−1 and 𝔤′/𝔤 > 𝔟, we may simply consider the growth order
𝔤−1 · [𝑒Σ𝛽 ]−𝑝 and notice that it falls under the previous case, for which the proposition was just
proven. Thus, the growth order 𝔤 · [𝑒Σ𝛽 ]𝑝 has a preimage under Σ or RΣ in all cases, and the
proposition is proven. �

Proposition 74. Let G be a set of growth orders that is
1. moderate,
2. monotone-quotient,
3. SR-regular,
4. SR-closed,
5. and closed under quotients.

Let 𝔟 ∈ G be a growth order with 𝔟 < 𝔫−1 and Σ𝔟 > 1, and let 𝛽 ∈ 𝔟 be monotone
decreasing. Then, if we denote by G[𝑒Σ𝔟]𝐴 the set

G[𝑒Σ𝔟]𝐴 = {𝔤 · [𝑒Σ𝛽 ]𝑝 : 𝔤 ∈ G, 𝑝 ∈ 𝐴}

where 𝐴 is an additive subgroup of R, we have that G[𝑒Σ𝔟]𝐴 also satises properties (1)
through (5).
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Proof. Let G[𝑒Σ𝔟]𝐴 be as described above. The fact that G[𝑒Σ𝔟]𝐴 satises (1) follows from 68.
The fact that it satises (2) follow from 71. The fact that it is SR-regular follows from 73.

To see why G[𝑒Σ𝔟]𝐴 is SR-closed, notice that an arbitrary element 𝔤 · [𝑒Σ𝛽 ]𝑝 can be rewritten
in the form (𝔤/𝔟) · 𝔟 · [𝑒Σ𝛽 ]𝑝 . It follows from 72 that the partial sum of this growth order is
equal to either (𝔤/𝔟) · [𝑒Σ𝛽 ]𝑝 or (Σ𝔤) · [𝑒Σ𝛽 ]𝑝 or 1. Clearly all three of these growth orders are
in G[𝑒Σ𝔟

𝐴
], since G is closed under quotients and SR-closed. Thus follows property (4).

Finally, the quotient of two arbitrary elements 𝔤1 · [𝑒Σ𝛽 ]𝑝 and 𝔤2 · [𝑒Σ𝛽 ]𝑞 of G[𝑒Σ𝔟]𝐴 can be
written as

𝔤1 · [𝑒Σ𝛽 ]𝑝

𝔤2 · [𝑒Σ𝛽 ]𝑞
= (𝔤1/𝔤2) · [𝑒Σ𝛽 ]𝑝−𝑞

which is an element of G[𝑒Σ𝔟]𝐴 because 𝐴 is an additive subgroup of R, and because 𝔤1/𝔤2 ∈ G
since G is closed under quotients. Hence, G[𝑒Σ𝔟]𝐴 satises (5) as well, and the theorem is
proven. �

Proposition 75. Let G be a moderate, monotone-quotient, SR-regular, and SR-closed set
of growth orders that is also closed under quotients. Then there exists a set Gexp ⊃ G that
satises each of these ve properties, but also has the following property: for any 𝔟 ∈ Gexp
with 𝔟 < 𝔫−1 and Σ𝔟 > 1, there exists 𝔞 ∈ Gexp such that P𝔞 = 𝔟.

Proof. Let P ⊂ 2S(R+)/∼ be dened as the set of moderate, monotone-quotient, SR-regular and
SR-closed supersets of G that are also closed under quotients. Dene a partial ordering on P
by letting G1 ≤ G2 i G1 = G2 or if there exists some 𝛽 ∈ 𝔟 ∈ G1 such that G1 [𝑒Σ𝛽 ]𝐴 ⊂ G2 for
which the exponential extension G1 [𝑒Σ𝛽 ]𝐴 is dened. Notice that for any chain in this partial
ordering, taking the union of all elements in that chain results in an element of P that is greater
than or equal to every element of that chain. Thus, every chain of P has an upper bound.

Now we may apply Zorn’s Lemma and conclude that P necessarily has a maximal element,
namely a set Gexp ⊃ G such that there exists no 𝛽 ∈ 𝔟 ∈ Gexp for which the extension Gexp [𝑒Σ𝔟]𝐴
is dened, for if it were dened, it would be a proper exponential extension of Gexp satisfying
each of the ve desired properties. Hence, if 𝔟 ∈ Gexp is such that 𝔟 < 𝔫−1 and Σ𝔟 > 1, it
cannot be the case that there is no 𝔞 ∈ Gexp with P = 𝔟, for if no such 𝔞 existed, the extension
Gexp [𝑒Σ𝔟]𝐴 could be constructed. Hence, for every such 𝔟 ∈ Gexp, there must exist 𝔞 ∈ Gexp
such that P𝔞 = 𝔟. �

THE BELOW PROPOSITION IS AN OLD OBSOLETE VERSION THAT I’M KEEPING IN CASE I
NEED TO REUSE SOME PARTS:
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Proposition 76. Let G be a moderate monotone-quotient SR-regular set that is closed
under products and logarithms. Let 𝔟, Σ𝔟, 𝔤 ∈ G and let 𝛽 ∈ 𝔟 < 1 be monotone decreasing
such that there exists no growth order 𝔠 ∈ G with 𝔩 ◦ 𝔠 = Σ𝔟.
Then if

𝔞 = Σ(𝔤 · 𝔟 · [𝑒Σ𝛽 ]𝑝)

we have that
1. If 𝔤 ≥ 1 and 𝔩 ◦ 𝔤 < Σ𝔟, then 𝔞 = 𝔤 · [𝑒Σ𝛽 ]𝑝 if 𝑝 > 0 and 𝔞 = 1 if 𝑝 < 0.
2. If 𝔤 < 1 and 𝔩 ◦ 𝔤−1 < Σ𝔟, then 𝔞 = 𝔤 · [𝑒Σ𝛽 ]𝑝 if 𝑝 > 0 and 𝔞 = 1 if 𝑝 < 0.
3. If 𝔤 ≥ 1 and 𝔩 ◦ 𝔤 > Σ𝔟, then 𝔞 = Σ(𝔤 · 𝔟) · [𝑒Σ𝛽 ]𝑝 .
4. If 𝔤 < 1 and 𝔩 ◦ 𝔤−1 > Σ𝔟, then 𝔞 = 1.

Proof. First, suppose that 𝔤 ≥ 1 and 𝔩 ◦ 𝔤 < Σ𝔟, and that 𝑝 > 0. Then we have that

𝔩 ◦ (𝔤 · [𝑒Σ𝛽 ]𝑝) = 𝔩 ◦ 𝔤 + 𝔩 ◦ [𝑒Σ𝛽 ]𝑝 = 𝔩 ◦ 𝔤 + Σ𝔟 = Σ𝔟

Now, if we let (𝑔𝑛) ∈ 𝔤 be a monotone increasing sequence which is always greater than 1, we
have that (log𝑔𝑛) is also a monotone increasing sequence of positive reals. It must therefore be
equal to Σ(𝑔′𝑛) for some other sequence (𝑔′𝑛) of positive reals. Further, we must have that 𝑔′𝑛/𝑏𝑛
tends to zero as 𝑛 → ∞, for otherwise we would have 𝔩 ◦ 𝔤 ≥= Σ[(𝑔′𝑛)] ≥ Σ𝔟, contradicting the
assumption that 𝔩 ◦ 𝔤 < Σ𝔟. Now, this means that

𝔤 · [𝑒Σ𝛽 ]𝑝 = [𝑒Σ( (𝑔′𝑛)+𝑝𝛽) ]

where the sequence (𝑔′𝑛) + 𝛽 tends to zero. Note also that Σ((𝑔′𝑛) + 𝑝𝛽) ∈ Σ𝔟. Finally, by 35, we
have that

Σ
(
[(𝑔′𝑛) + 𝑝𝛽] · [𝑒Σ( (𝑔

′
𝑛)+𝑝𝛽) ]

)
= [𝑒Σ( (𝑔′𝑛)+𝑝𝛽) ]

Now, notice that since𝑔′𝑛/𝑏𝑛 tends to zero, we have that (𝑔′𝑛)+𝑝𝛽 ∼ 𝛽 , and therefore [(𝑔′𝑛)+𝑝𝛽] =
𝔟. Additionally, recall that [𝑒Σ( (𝑔′𝑛)+𝑝𝛽) ] = [𝑒Σ(𝑔′𝑛) ] · [𝑒Σ𝑝𝛽 ] = 𝔤 · [𝑒Σ𝛽 ]𝑝 . Therefore, the above
equality becomes

𝔞 = Σ(𝔟 · 𝔤 · [𝑒Σ𝛽 ]𝑝) = 𝔤 · [𝑒Σ𝛽 ]𝑝

as claimed.

Now suppose that 𝑝 < 0. Because 𝔩 ◦ 𝔤 < Σ𝔟, we have that 𝔤 < [𝑒Σ𝔟]𝑞 for all 𝑞 > 0. By choosing
𝑞 = −𝑝/2, we may conclude that

𝔤 · 𝔟 · [𝑒Σ𝛽 ]𝑝 ≤ 𝔟 · [𝑒Σ𝛽 ]𝑝/2

Now, notice that, by the previous part, we have that this upper bound is equal to

𝔟[𝑒Σ𝛽 ]−𝑝/2(
Σ(𝔟[𝑒Σ𝛽 ]−𝑝/2)

)2
which, by 34, has convergent partial sums. Therefore, we have that

Σ(𝔤 · 𝔟 · [𝑒Σ𝛽 ]𝑝) = 1

when 𝑝 < 0, completing our proof of the rst case. �
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6.8. Isomorphic chains

73



7. More growth order operations

This chapter is meant as a place to list several other miscellaneous interesting operations on
growth orders that I’ve considered.

7.1. Linear transformations

Several of the nice properties of the summation operation Σ explored in previous sections relied
solely on the linearity of Σ𝛼 as a function of the sequence 𝛼 . In general, if we consider S(R+)
as a subset (not a subspace) of the vector space S(R) and look at other linear transformations
on S(R) under which S(R+) is closed, we can derive several other interesting transformations
on growth orders. Let’s begin by proving the following general result, which entails that any
such transformation can be extended to a well-dened transformation on growth orders:

Proposition 77. Let T : 𝑋 → 𝑋 be a linear transformation on some subspace 𝑋 ⊂ S(R),
and let 𝑋 + = 𝑋 ∩ S(R+). If 𝑋 + is closed under T, then 𝛼 ∼ 𝛽 =⇒ T𝛼 ∼ T𝛽 for all
𝛼, 𝛽 ∈ 𝑋 +.

Proof. Let T𝑋 → 𝑋 be a linear transformation which satises the above hypotheses. Then
if [𝛼] ≤ [𝛽] for some sequences 𝛼, 𝛽 ∈ 𝑋 + ⊂ S(R+), we have by denition that there exists
a constant 𝐶 > 0 such that all entries of 𝛼 are less than all entries of 𝐶𝛽 . In other words,
the sequence 𝐶𝛽 − 𝛼 ∈ 𝑋 has only positive entries, so that 𝐶𝛽 − 𝛼 ∈ 𝑋 +. This means that
T(𝐶𝛽 − 𝛼) ∈ 𝑋 + since 𝑋 + is closed under T, and further 𝐶T𝛽 − T𝛼 ∈ 𝑋 + by linearity of T. This
means that all entries of the sequence 𝐶T𝛽 − T𝛼 are positive, so that all entries of T𝛼 are less
than all entries of 𝐶T𝛽 . This in turn implies that [T𝛼] ≤ [T𝛽].

Hence, we have shown that [𝛼] ≤ [𝛽] =⇒ [T𝛼] ≤ [T𝛽] for all 𝛼, 𝛽 ∈ 𝑋 +. Therefore, if 𝛼 ∼ 𝛽 ,
we have that both [𝛼] ≤ [𝛽] and [𝛼] ≥ [𝛽], implying that both [T𝛼] ≤ [T𝛽] and [T𝛼] ≥ [T𝛽],
and therefore T𝛼 ∼ T𝛽 . Hence, 𝛼 ∼ 𝛽 =⇒ T𝛼 ∼ T𝛽 for all 𝛼, 𝛽 ∈ 𝑋 +, as claimed. �

The above proposition shows that certain classes of linear transformations, when applied to
sequences with positive elements, produce sequences whose growth order depends only on the
growth order of the input. This justies the following denition:
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Denition 27. If T : 𝑋 → 𝑋 is a linear transformation on a subspace 𝑋 ⊂ S(R+) such
that 𝑋 ∩ S(R+) is closed under T, then we may dene T as a transformation on growth
orders by letting T𝔞 = T[𝛼] = [T𝛼] for any 𝔞 ∈ S(R+)/∼ and 𝛼 ∈ 𝔞.

Let’s look at a couple examples of transformations that can be dened in this way. Sometimes
it is interesting to consider the generating functions of sequences of integers or real numbers
𝛼 = (𝑎𝑛), which can be dened as follows:

𝑓𝛼 (𝑥) =
∞∑︁
𝑛=1

𝑎𝑛𝑥
𝑛

Note that this sum has potential convergence issues. However, if we restrict 𝑥 to lie in the
interval 𝑥 ∈ (−1, 1) and impose additional conditions on the sequence (𝑎𝑛), we can ensure
convergence. For instance, we could consider the subspace of S(R) consisting of sequences
with sub-exponential growth, i.e. the sequences (𝑎𝑛) such that for each 𝑏 > 1, there exists
a constant 𝐶 > 0 such that |𝑎𝑛 | ≤ 𝐶𝑏𝑛 for all 𝑛 ∈ N. Given this condition, the above sum
converges (absolutely, in fact) for all 𝑥 ∈ (−1, 1), and it is an easy exercise to verify that this is
the case.

For many sequences 𝛼 , the function 𝑓𝛼 (𝑥) has a pole at 𝑥 = 1. Therefore, given a sequence 𝛼
with at most polynomial growth, it might be interesting to analyze the behavior of the function
𝑓𝛼 near the point 𝑥 = 1. One way of doing this would be to consider the sequence of points

𝑓𝛼

(1
2

)
, 𝑓𝛼

(2
3

)
, 𝑓𝛼

(3
4

)
, · · · , 𝑓𝛼

(
1 − 1

𝑛

)
, · · ·

approaching 𝑥 = 1 gradually from the left. The mapping from the sequence 𝛼 to the above
sequence of values of its generating function actually denes a linear transformation 𝑋 → 𝑋 ,
where 𝑋 ⊂ S(R) is the subspace consisting of all sub-exponential sequences! Let us denote this
transformation by G : 𝑋 → 𝑋 . It is easy to verify that 𝑋 + = 𝑋 ∩ S(R+) is closed under G, for
the innite sum

𝑓𝛼 (𝑥) =
∞∑︁
𝑛=1

𝑎𝑛𝑥
𝑛

is positive for all 𝑥 ∈ (0, 1) and sequences of positive numbers (𝑎𝑛) for which it converges. We
may therefore extend G to a transformation on growth orders, as per the previous denition.

We are able to deduce some special values of G right o the bat. For one, the series identity

∞∑︁
𝑛=1

(
𝑝 + 𝑛
𝑛

)
𝑥𝑛 =

𝑥

(1 − 𝑥)𝑝+1

for powers 𝑝 ∈ N tells us that G𝔫𝑝 = 𝔫𝑝+1. Additionally, the Taylor series for the logarithm

∞∑︁
𝑛=1

𝑥𝑛

𝑛
= − ln(1 − 𝑥)
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gives us the value G𝔫−1 = 𝔩. By checking other low-hanging fruit, we might notice that G𝔞
seems to match the value of Σ𝔞 for many sequences 𝔞. This is no coincidence, as the following
proposition demonstrates.

Proposition 78. For all moderate growth orders 𝔞, we have G𝔞 = Σ𝔞.

Proof. The following sequence (𝑔𝑛) has growth order G𝔞, by our denition of G:

𝑔𝑛 =

∞∑︁
𝑘=1

𝑎𝑘

(
1 − 1

𝑛

)𝑘
Now dene the sequence (𝑐𝑛) as follows:

𝑐𝑛 =

⌊
ln(1/2)
ln(1 − 1

𝑛
)

⌋
so that, for all 𝑛 ∈ N, we have (

1 − 1
𝑛

)𝑐𝑛
≥ 1

2
and (

1 − 1
𝑛

)𝑐𝑛+1
≤ 1

2
Additionally, because − ln(1 − ℎ) = Θ(ℎ) as ℎ → 0, we have that (𝑐𝑛) has growth order 𝔫.

Now we will bound the dierence between (𝑔𝑛) and a sequence which has growth order Σ𝔞 in
order to show that (𝑔𝑛) has precisely the growth order Σ𝔞. Consider the tail-end of the series
dening 𝑔𝑛 :

𝑔𝑛 −
𝑐𝑛∑︁
𝑘=1

𝑎𝑘

(
1 − 1

𝑛

)𝑘
=

∞∑︁
𝑘=𝑐𝑛+1

𝑎𝑘

(
1 − 1

𝑛

)𝑘
Let us split up this series as follows (which is allowed because of its absolute convergence):

∞∑︁
𝑗=1

(𝑐𝑛+1)2𝑗+1−1∑︁
𝑘=(𝑐𝑛+1)2𝑗

𝑎𝑘

(
1 − 1

𝑛

)𝑘
Now, because (𝑎𝑛) is a moderate sequence, there exists a constant𝐶 > 0 such that 𝑎𝑚 ≤ 𝐶𝑎𝑛 for
all 𝑛 ≤ 𝑚 ≤ 2𝑛. This implies that 𝑎𝑘 ≤ 𝐶 𝑗+1𝑎𝑐𝑛+1 for all 𝑘 between (𝑐𝑛 + 1)2𝑗 and (𝑐𝑛 + 1)2𝑗+1− 1,
for all 𝑗 ∈ N. Additionally, from a previous inequality, we have that (1 − 1/𝑛)𝑘 ≤ 1/22𝑗 for all
𝑘, 𝑗 ∈ N with 𝑘 ≥ (𝑐𝑛 + 1)2𝑗 . Hence, the above series is bounded above by

∞∑︁
𝑗=1

(𝑐𝑛+1)2𝑗+1−1∑︁
𝑘=(𝑐𝑛+1)2𝑗

𝐶 𝑗+1𝑎𝑐𝑛+1 ·
1
22𝑗
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which can be simplied as follows:

𝑎𝑐𝑛+1

∞∑︁
𝑗=1

2𝑗 (𝑐𝑛 + 1) ·𝐶 𝑗+1

22𝑗

so that we have the inequality

𝑔𝑛 −
𝑐𝑛∑︁
𝑘=1

𝑎𝑘

(
1 − 1

𝑛

)𝑘
≤ 𝑎𝑐𝑛+1(𝑐𝑛 + 1)

∞∑︁
𝑗=1

2𝑗𝐶 𝑗+1

22𝑗

The LHS, as a sequence of 𝑛, has the same growth order as 𝑎𝑐𝑛+1(𝑐𝑛 + 1), since the innite
series is just a constant factor. Note that the innite series converges no matter the value of 𝐶
because of the superexponential term 22𝑗 in the denominator of the summand. Now, notice that
𝑎𝑐𝑛+1(𝑐𝑛 + 1) has a growth order of (𝔞 ◦ 𝔠) · 𝔠 by the moderateness of 𝔞. This means that

𝑔𝑛 =

𝑐𝑛∑︁
𝑘=1

𝑎𝑘

(
1 − 1

𝑛

)𝑘
+ O(𝑛𝑎𝑛)

The sum on the RHS can easily be seen to have growth order Σ𝔞 (because each of the coecients
(1 − 1/𝑛)𝑘 is between 1 and 1/2), and therefore the above formula asserts that G𝔞 = Σ𝔞 + 𝔟

where 𝔟 ≤ 𝔫𝔞. However, recall that Σ𝔞 ≥ 𝔫𝔞 for all moderate growth orders 𝔞, implying that
𝔟 ≤ Σ𝔞 and therefore Σ𝔞 + 𝔟 = Σ𝔞. Thus, we have that G𝔞 = Σ𝔞 as claimed. �

Question 5 Is G𝔞 = Σ𝔞 for immoderate sub-exponential growth orders 𝔞 as well? What are
some specic examples, for instance, what is G𝔞 when 𝔞 = [(𝑒

√
𝑛)]?

We can also do a similar construction involving Dirichlet series. Given a sequence 𝛼 = (𝑎𝑛) ∈
S(R), its Dirichlet series is dened as

𝒟𝛼 (𝑠) =
∞∑︁
𝑛=1

𝑎𝑛

𝑛𝑠

Again, this may or may not converge, depending on the sequence 𝛼 . However, if we restrict 𝛼
to the subspace 𝑋 ⊂ S(R) consisting of all sequences with sub-polynomial growth, that is, the
sequences with the property that for all 𝑝 > 0, there exists 𝐶 > 0 such that |𝑎𝑛 | ≤ 𝐶𝑛𝑝 for all
𝑛 ∈ N, then the above series is guaranteed to converge absolutely for all 𝑠 > 1. (This is another
easy exercise).

However, as 𝑠 approaches 1 from above, this function𝒟𝛼 (𝑠) often approaches innity, as the
terms of the series decay more and more slowly as 𝑠 grows smaller. In similar fashion to our
treatment of generating functions, we might investigate this pole by considering a sequence of
values

𝒟𝛼

(3
2

)
, 𝒟𝛼

(4
3

)
, 𝒟𝛼

(5
4

)
, · · · ,𝒟𝛼

(
1 + 1

𝑛

)
, · · ·

Since 𝒟𝛼 (𝑠) is a linear transformation S(R) ⊃ 𝑋 → R for any xed value of 𝑠 ∈ (1,∞), and
furthermore𝒟𝛼 (𝑠) > 0 when 𝛼 ∈ S(R+), we have that the above sequence of values denes a
linear transformation D : 𝑋 → 𝑋 under which 𝑋 + = 𝑋 ∩ S(R+) is closed. We may furthermore
dene D as a transformation on sub-polynomial growth orders.
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7. More growth order operations

Exercise 12 Calculate the following special values of D:

• D1 = 𝔫

• D𝔩 = 𝔫2

• D𝔩2 = 𝔫3

Can you generalize?

We can also dene linear transformations such as the following:

Denition 28. Given a sequence 𝛼 = (𝑎𝑛) ∈ S(R+), dene its halving sum H𝛼 to be
the sequence (𝑏𝑛), where

𝑏𝑛 = 𝑎𝑛 + 𝑎 b𝑛/2c + 𝑎 b𝑛/4c + · · · + 𝑎1 =
blog2 𝑛c∑︁
𝑘=0

𝑎 b𝑛/2𝑘 c

and if 𝔞 = [𝛼] is the growth order of 𝛼 , dene H𝔞 = H[𝛼] = [H𝛼].

As we shall see in the next section, this transformation turns out to be incredibly useful for
determining the asymptotic behavior of recurrence relations. The transformationH has a couple
of convenient similarities to Σ that make it easier to calculate its values given what we already
know about Σ. For instance, it satises the following analogue of 29, which allows us to deploy
similar "squeezing" arguments to deduce many of its values:

Proposition 79. If 𝔞 ≤ 𝔟 and 𝔞/𝔟 is monotone, then

𝔞

H𝔞 ≤ 𝔟

H𝔟

Proof. Let 𝔞 ≤ 𝔟 with 𝔞/𝔟 monotone, so that we may nd 𝛼 ∈ 𝔞, 𝛽 ∈ 𝔟, 𝛾 ∈ 𝔟/𝔞 so that 𝛾 is a
monotone increasing sequence. From the fact that 𝛾 = (𝑐𝑛) is monotone increasing, it follows
directly that

blog2 𝑛c∑︁
𝑘=0

𝑐 b𝑛/2𝑘 c𝑎 b𝑛/2𝑘 c ≤ 𝑐𝑛
blog2 𝑛c∑︁
𝑘=0

𝑎 b𝑛/2𝑘 c

which tells us that [H(𝛾𝛼)] ≤ [𝛾H𝛼]. This inequality, however, is equivalent to [𝛾𝛼/H(𝛾𝛼)] ≥
[𝛼/H𝛼], or [𝛽/H𝛽] ≥ [𝛼/H𝛼], which implies that

𝔞

H𝔞 ≤ 𝔟

H𝔟

as claimed. �
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As it happens, it is quite easy to calculate H𝔞 for polynomial growth orders 𝔞 = 𝔫𝑝 . In particular,
if 𝛽 = H𝛼 with 𝛼 = (𝑛𝑝), we have the upper bound

𝑏𝑛 =

blog2 𝑛c∑︁
𝑘=0

⌊ 𝑛
2𝑘

⌋𝑝
≤

∞∑︁
𝑘=0

( 𝑛
2𝑘

)𝑝
=

𝑛𝑝

1 − 2−𝑝

and the lower bound

𝑏𝑛 =

blog2 𝑛c∑︁
𝑘=0

⌊ 𝑛
2𝑘

⌋𝑝
≥ 𝑛𝑝

so that we have both upper and lower bounds of order 𝔫𝑝 , implying that H𝔫𝑝 = 𝔫𝑝 for all
𝑝 > 0. By the squeezing argument, this implies that H𝔞 = 𝔞 for all 𝔞 such that 𝔫𝑝 ≤ 𝔞 ≤ 𝔫𝑞

with 𝔞/𝔫𝑝 and 𝔞/𝔫𝑞 both monotone for some 𝑝, 𝑞 > 0. For instance, this gives us formulae like
H(

√
𝔫𝔩/𝔩2) =

√
𝔫𝔩/𝔩2 for free.

The following proposition facilitates the calculation of H𝔞 for growth orders 𝔞 which have
logarithmic growth or slower:

Proposition 80. For all moderate growth orders 𝔞, the following formula holds:

H(𝔞 ◦ 𝔩) = (Σ𝔞) ◦ 𝔩

Proof. Consider the sequence _ = (dlog2(𝑛 + 1)e) of growth order [_] = 𝔩, and let 𝔞 be a
moderate growth order with 𝛼 = (𝑎𝑛) ∈ 𝔞. The sequence (𝑏𝑛) has growth order H(𝔞 ◦ 𝔩), where:

𝑏𝑛 =

blog2 𝑛c∑︁
𝑘=0

𝑎 dlog2 ( b𝑛/2𝑘 c+1) e

Now, notice that for all 𝑛, 𝑘 ∈ N with 𝑘 ≤ blog2 𝑛c, the following equality holds:

dlog2(b𝑛/2𝑘c + 1)e = dlog2(𝑛 + 1)e − 𝑘

This can be proven by noticing that dlog2(𝑛+1)e equals 𝑝+1 preciselywhen𝑛 ∈ {2𝑝 , · · · , 2𝑝+1−1},
and when 𝑛 is in this set, then b𝑛/2𝑘c is necessarily in the set {2𝑝−𝑘 , · · · , 2𝑝−𝑘+1−1}. This means
that the above formula for 𝑏𝑛 is equivalent to

𝑏𝑛 =

blog2 𝑛c∑︁
𝑘=0

𝑎 dlog2 (𝑛+1) e−𝑘

We may reindex this sum, by reversing the order of summation, although the exact reindexing
depends on whether 𝑛 is a power of two, because this determines whether or not blog2 𝑛c + 1 =
dlog2(𝑛 + 1)e. When 𝑛 is a power of two, this is equal to

𝑏𝑛 =

blog2 𝑛c+2∑︁
𝑘=2

𝑎𝑘
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whereas when 𝑛 is not a power of two, it equals

𝑏𝑛 =

blog2 𝑛c+1∑︁
𝑘=1

𝑎𝑘

Since 𝔞 is moderate, both expressions have a growth order of (Σ𝔞) ◦ 𝔩, which gives us the desired
equality H(𝔞 ◦ 𝔩) = (Σ𝔞) ◦ 𝔠. �

This formula gives us special values like H𝔩−1 = 𝔩2 and H(𝔩−1𝔩−12 ) = 𝔩3. Additionally, since
𝐻 𝔩−2 = 1 by the above formula, and since H𝔞 ≥ 1 for all growth orders 𝔞 clearly from its
denition, we can use the squeezing argument to deduce values of H at even faster-decaying
growth orders like H𝔫𝑝 = 1 for all 𝑝 < 0.

7.2. Recurrences

Of particular interest in computer science is the following type of recurrence, which is often
referred to as a "divide and conquer" recurrence:

𝑇 (𝑛) = 𝑎𝑇 (b𝑛/𝑏c) + 𝑓 (𝑛)

In the theory of algorithm complexity analysis, The Master Theorem is a theorem that determines
the growth order of (𝑇 (𝑛)) in terms of 𝑎, 𝑏, and the growth order of (𝑓 (𝑛)), for certain growth
orders 𝑓 . We will shortly prove a result that generalizes the Master Theorem to a slightly
broader class of functions 𝑓 (𝑛).

Proposition 81. If 𝑓1, 𝑓2 : N→ R are such that [𝑓1(𝑛)] = [𝑓2(𝑛)], and 𝑇1,𝑇2 : N→ R+
satisfy the recurrences

𝑇1(𝑛) = 𝑎𝑇1(b𝑛/𝑏c) + 𝑓1(𝑛)

𝑇2(𝑛) = 𝑎𝑇2(b𝑛/𝑏c) + 𝑓2(𝑛)

for all suciently large 𝑛 ∈ N and for some constants 𝑎 > 0, 𝑏 > 1, then it follows that
[𝑇1(𝑛)] = [𝑇2(𝑛)]. Additionally, if [𝑓1(𝑛)] ≤ [𝑓2(𝑛)], then [𝑇1(𝑛)] ≤ [𝑇2(𝑛)].

Proof. Suppose that 𝑇1,𝑇2 satsify the above recurrences for all 𝑛 ≥ 𝑁 , where 𝑁 ∈ N. Notice
that 𝑇1(𝑛)/𝑇2(𝑛) is bounded above by some positive constant 𝐶1 > 0 for 𝑛 < 𝑁 , since there are
only nitely many such values of 𝑛. Additionally, since [𝑓1(𝑛)] = [𝑓2(𝑛)], there exists a positive
constant 𝐶2 > 0 such that 𝑓1(𝑛)/𝑓2(𝑛) is bounded above by 𝐶2.

Let us dene 𝐶 = max(𝐶1,𝐶2). Let us suppose that 𝑇1(𝑛)/𝑇2(𝑛) ≤ 𝐶 , or 𝑇1(𝑛) ≤ 𝐶𝑇2(𝑛), for
some 𝑛 ∈ N, and suppose𝑚 ∈ N is such that𝑚 ≥ 𝑁 and 𝑏𝑛 ≤ 𝑚 < 𝑏𝑛 + 𝑏, so that b𝑚/𝑏c = 𝑛.
Then we have that

𝑇1(𝑚) = 𝑎𝑇1(𝑛) + 𝑓1(𝑛) ≤ 𝐶𝑎𝑇2(𝑛) +𝐶2 𝑓2(𝑛) ≤ 𝐶 (𝑎𝑇2(𝑛) + 𝑓2(𝑛)) ≤ 𝐶𝑇2(𝑚)
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7. More growth order operations

so that 𝑇1(𝑚)/𝑇2(𝑚) is again bounded above by 𝐶 . Thus, we have that for all𝑚 ≥ 𝑁 , the ratio
𝑇1(𝑚)/𝑇2(𝑚) is bounded above by 𝐶 if 𝑇1(b𝑚/𝑏c)/𝑇2(b𝑚/𝑏c) is bounded above by 𝐶 . Since the
ratio is bounded above by 𝐶 for all𝑚 < 𝑁 by the denition of 𝐶 , it follows by induction that
𝑇1(𝑚)/𝑇2(𝑚) ≤ 𝐶 for all𝑚 ∈ N and therefore [𝑇1(𝑛)] ≤ [𝑇2(𝑛)].

Hence we have that [𝑓1(𝑛)] ≤ [𝑓2(𝑛)] =⇒ [𝑇1(𝑛)] ≤ [𝑇2(𝑛)], which is the second claim.
Therefore, if [𝑓1(𝑛)] = [𝑓2(𝑛)], so that both [𝑓1(𝑛)] ≤ [𝑓2(𝑛)] and [𝑓1(𝑛)] ≥ [𝑓2(𝑛)], we have
that both [𝑇1(𝑛)] ≤ [𝑇2(𝑛)] and [𝑇1(𝑛)] ≥ [𝑇2(𝑛)], so that [𝑇1(𝑛)] = [𝑇2(𝑛)], which proves the
rst claim. �

As a consequence of this proposition, the following denition is well-posed:

Denition 29. If 𝑎 > 0, 𝑏 > 1 are constants and 𝔣 is a growth order, dene divcon(𝑎, 𝑏, 𝔣)
to be the growth order of any sequence (𝑇 (𝑛)) satisfying

𝑇 (𝑛) = 𝑎𝑇 (b𝑛/𝑏c) + 𝑓 (𝑛)

for all suciently large 𝑛, where (𝑓 (𝑛)) ∈ 𝔣.

We will shortly prove a proposition that greatly simplies the special case of divcon(𝑎, 𝑏, 𝔣) with
𝑎 = 1. First, however, we must prove the following lemma:

Proposition 82. Suppose 𝑇,𝑇 ′ : N → R+ satisfy the following recurrences for all su-
ciently large 𝑛:

𝑇 (𝑛) = 𝑇 (𝑎𝑛) + 𝑓 (𝑛)

𝑇 ′(𝑛) = 𝑇 (𝑏𝑛) + 𝑓 (𝑛)

where 𝑓 : N→ R+ is monotone increasing and (𝑎𝑛), (𝑏𝑛) are monotone increasing sequences
of positive integers with 𝑎𝑛 ≤ 𝑏𝑛 < 𝑛. Then we have that [𝑇 (𝑛)] ≤ [𝑇 ′(𝑛)].

Proof. Let 𝑁 ∈ N be such that 𝑇,𝑇 ′ satisfy these recurrences for all 𝑛 ≥ 𝑁 . Without loss of
generality, it suces to prove the theorem for 𝑇,𝑇 ′ that are constant for all 𝑛 < 𝑁 , i.e. so that
𝑇 (𝑛) = 𝑇 ′(𝑛) = 𝑐 > 0 for all 𝑛 < 𝑁 . This is because the rst 𝑁 − 1 terms of 𝑇 and 𝑇 ′ will not
aect their growth order.

First we will prove that 𝑇 and 𝑇 ′ are themselves monotone increasing functions. First of all, if
𝑛 ≥ 𝑁 and 𝑇 is a monotone increasing function on {1, 2, · · · , 𝑛}, we have that

𝑇 (𝑛 + 1) = 𝑇 (𝑎𝑛+1) + 𝑓 (𝑛 + 1) ≥ 𝑇 (𝑎𝑛) + 𝑓 (𝑛) = 𝑇 (𝑛)

since 𝑎𝑛+1 ≥ 𝑎𝑛 and 𝑎𝑛, 𝑎𝑛+1 ∈ {1, 2, · · · , 𝑛}, where 𝑇 is assumed to be monotone. But since
𝑇 (𝑛 + 1) ≥ 𝑇 (𝑛), we have that 𝑇 must also be monotone on the set {1, 2, · · · , 𝑛 + 1}. We shall
use this fact for an inductive argument. For the base case, notice that we know 𝑇 is monotone
on {1, 2, · · · , 𝑁 } because 𝑇 (𝑛) = 𝑐 for 𝑛 = 1, 2, · · · , 𝑁 − 1 and 𝑇 (𝑁 ) = 𝑐 + 𝑓 (𝑁 ). Thus, by
induction, we have that 𝑇 is monotone on each set {1, 2, · · · , 𝑛} for all 𝑛 ≥ 𝑁 , and therefore
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7. More growth order operations

it is a monotone function N → R+. By similar reasoning, we also have that 𝑇 ′ is monotone
increasing.

Now we are ready to prove the desired claim. Suppose that, for some 𝑛 ≥ 𝑁 , we know that
𝑇 (𝑚) ≤ 𝑇 ′(𝑚) for all𝑚 ∈ {1, 2, · · · , 𝑛}. Then we have that

𝑇 (𝑛 + 1) = 𝑇 (𝑎𝑛+1) + 𝑓 (𝑛 + 1) ≤ 𝑇 ′(𝑎𝑛+1) + 𝑓 (𝑛 + 1) ≤ 𝑇 ′(𝑏𝑛+1) + 𝑓 (𝑛 + 1) = 𝑇 ′(𝑛 + 1)

using the facts that 𝑎𝑛+1 ∈ {1, 2, · · · , 𝑛}, that 𝑎𝑛+1 ≤ 𝑏𝑛+1, and that 𝑇 ′ is monotone increasing.
Thus, the same inequality holds for all 𝑚 ∈ {1, 2, · · · , 𝑛 + 1} as well. The inequality holds
for all𝑚 ∈ {1, 2, · · · , 𝑁 } clearly, since 𝑇 (𝑛) = 𝑇 ′(𝑛) for 𝑛 = 1, 2, · · · , 𝑁 . Hence, we have that
𝑇 (𝑚) ≤ 𝑇 ′(𝑚) for all𝑚 ∈ N, and [𝑇 (𝑛)] ≤ [𝑇 ′(𝑛)]. �

Proposition 83. For all 𝑏 > 1 and moderate monotone 𝔣 ≥ 1, we have divcon(1, 𝑏, 𝔣) = H𝔣.

Proof. Clearly we have that divcon(1, 2, 𝔣) = H𝔣 by the denition of H. Therefore, it suces to
show that the growth order divcon(1, 𝑏, 𝔣) does not depend on the value of 𝑏 > 1.

Let 𝑏1, 𝑏2 > 1 be given. Because 𝑏1 > 1, there exists some exponent 𝑝 ∈ N such that 𝑏𝑝1 > 𝑏2.
Now, if we consider a function 𝑇 : N→ R+ satisfying the recurrence

𝑇 (𝑛) = 𝑇 (b𝑛/𝑏1c) + 𝑓 (𝑛)

for all suciently large𝑛 for somemonotone increasing function 𝑓 : N→ R+, then by repeatedly
making substitutions in this recurrence, we have each of the following recurrences, each of
which holds for suciently large 𝑛:

𝑇 (𝑛) = 𝑇 (bb𝑛/𝑏1c/𝑏1c) + 𝑓 (𝑛) + 𝑓 (b𝑛/𝑏1c)

𝑇 (𝑛) = 𝑇 (bbb𝑛/𝑏1c/𝑏1c/𝑏1c) + 𝑓 (𝑛) + 𝑓 (b𝑛/𝑏1c) + 𝑓 (bb𝑛/𝑏1c/𝑏1c)

· · ·

Now, let us dene a sequence of functions

𝑓1(𝑛) = 𝑓 (𝑛)

𝑓2(𝑛) = 𝑓 (𝑛) + 𝑓 (b𝑛/𝑏1c)

· · ·

𝑓𝑘+1(𝑛) = 𝑓 (𝑛) + 𝑓𝑘 (b𝑛/𝑏1c)

· · ·

Notice that each of the functions 𝑓𝑘 is monotone increasing, since 𝑓 is monotone increasing
and the function b𝑛/𝑏1c is monotone increasing. Notice also that [𝑓𝑘 (𝑛)] = [𝑓 (𝑛)] for all 𝑘 ∈ N
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by the moderateness of 𝑓 . By the previous lemma, we may argue that [𝑇 (𝑛)] ≤ [𝑇 ′(𝑛)], where
𝑇 ′ is a function satisfying the following recurrence for all suciently large 𝑛:

𝑇 ′(𝑛) = 𝑇 ′(b𝑛/𝑏𝑝1 c) + 𝑓𝑝 (𝑛)

and, applying the lemma again and using the fact that 𝑏𝑝1 ≥ 𝑏2, we can argue that [𝑇 ′(𝑛)] ≤
[𝑇 ′′(𝑛)], where 𝑇 ′′ satises the following recurrence for all suciently large 𝑛:

𝑇 ′′(𝑛) = 𝑇 ′′(b𝑛/𝑏2c) + 𝑓𝑝 (𝑛)

Of course, the growth order of (𝑇 ′′(𝑛)) is divcon(1, 𝑏2, 𝔣), since [𝑓𝑝 (𝑛)] = [𝑓 (𝑛)]. Thus, we have
that divcon(1, 𝑏1, 𝔣) ≤ divcon(1, 𝑏2, 𝔣) for arbitrary 𝑏1, 𝑏2 > 1. But since 𝑏1, 𝑏2 were arbitrary,
we also have divcon(1, 𝑏2, 𝔣) ≤ divcon(1, 𝑏1, 𝔣) and therefore divcon(1, 𝑏1, 𝔣) = divcon(1, 𝑏2, 𝔣),
showing that the growth order divcon(1, 𝑏, 𝔣) does not depend on the value of 𝑏. The desired
claim follows. �

Proposition 84. For all 𝑎 > 0 and 𝑏 > 1 and moderate monotone 𝔣 ≥ 1, we have that

divcon(𝑎, 𝑏, 𝔣) = 𝔫𝑐 · divcon(1, 𝑏, 𝔫−𝑐 · 𝔣)

where 𝑐 = log𝑏 (𝑎).

Proof. Let 𝑓 : N→ R+ be monotone increasing and consider the recurrence

𝑇 (𝑛) = 𝑎𝑇 (b𝑛/𝑏c) + 𝑓 (𝑛)

If we multiply both sides of this recurrence by 𝑛−𝑐 , where 𝑐 = log𝑏 (𝑎), we obtain the equality

𝑛−𝑐𝑇 (𝑛) = (𝑛/𝑏)−𝑐𝑇 (b𝑛/𝑏c) + 𝑛−𝑐 𝑓 (𝑛)

Now, notice that
1

(𝑛/𝑏)𝑐 =
1

(b𝑛/𝑏c + O(1))𝑐 =
1

b𝑛/𝑏c𝑐 − O
( 1
𝑛𝑐+1

)
which means that

𝑛−𝑐𝑇 (𝑛) = b𝑛/𝑏c−𝑐𝑇 (b𝑛/𝑏c) + 𝑛−𝑐 𝑓 (𝑛) −𝑇 (b𝑛/𝑏c) · O
( 1
𝑛𝑐+1

)
Now, the monotonicity of 𝑓 can be used to prove easily from the original recurrence for 𝑇 that
[𝑇 (𝑛)] ≤ [𝑛𝑐 𝑓 (𝑛)]. This means that the quantity

𝑇 (b𝑛/𝑏c) · O
( 1
𝑛𝑐+1

)
is also 𝑛−𝑐 𝑓 (𝑛) · O(𝑛−1). We may use this bound to modify our recurrence:

𝑛−𝑐𝑇 (𝑛) = b𝑛/𝑏c−𝑐𝑇 (b𝑛/𝑏c) + 𝑛−𝑐 𝑓 (𝑛) · (1 − O(𝑛−1))
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Therefore, there exists a function 𝑓 ′ : N→ R+ such that [𝑓 (𝑛)] = [𝑓 ′(𝑛)] and, for all suciently
large 𝑛,

𝑛−𝑐𝑇 (𝑛) = b𝑛/𝑏c−𝑐𝑇 (b𝑛/𝑏c) + 𝑛−𝑐 𝑓 ′(𝑛)
Now, if we dene a function 𝑇 ′ : N→ R+ by letting 𝑇 ′(𝑛) = 𝑛−𝑐𝑇 (𝑛) for all 𝑛 ∈ N, then 𝑇 ′ will
satisfy the recurrence

𝑇 ′(𝑛) = 𝑇 ′(b𝑛/𝑏c) + 𝑛−𝑐 𝑓 ′(𝑛)
and this function, of course, must have [𝑇 ′(𝑛)] = divcon(1, 𝑏, 𝔫−𝑐 ·𝔣). But since𝑇 ′(𝑛) = 𝑛−𝑐𝑇 (𝑛),
we have that [𝑇 (𝑛)] = 𝔫𝑐 · divcon(1, 𝑏, 𝔫−𝑐 · 𝔣) as claimed. �

Proposition 85. Let (𝑎𝑛) be a moderate and monotone sequence with growth order 𝔞 < 𝔫

such that 𝑎𝑛 < 𝑛/2 for all 𝑛 suciently large. Additionally, let (𝑏𝑛) be a moderate sequence
with growth order 𝔟. If 𝑓 : N→ R satises the recurrence

𝑓 (𝑛) = 𝑓 (𝑛 − 𝑎𝑛) + 𝑏𝑛

for all 𝑛 suciently large, then the sequence (𝑓 (𝑛)) has growth order H(𝔫𝔟/𝔞).

Proof. Let (𝑎𝑛), (𝑏𝑛) and 𝑓 (𝑛) be dened as in the above statement. Because 𝑎𝑛 < 𝑛/2 for all
𝑛 suciently large and 𝑓 satises the stated recurrence for all 𝑛 suciently large, we may let
2𝑁 be the smallest power of 2 such that 𝑎𝑛 < 𝑛/2 and 𝑓 (𝑛) = 𝑓 (𝑛 − 𝑎𝑛) + 𝑏𝑛 for all 𝑛 > 2𝑁 .
Also, let𝑀 and𝑀 ′ be the respective maximum and minimum values among 𝑓 (1), · · · , 𝑓 (2𝑁 ).
Additionally, since (𝑏𝑛) is moderate, there exist constants 𝐶1 < 1 < 𝐶2 such that

𝐶1𝑏𝑛 ≤ 𝑏𝑚 ≤ 𝐶2𝑏𝑛

for all 𝑛 ≤ 𝑚 ≤ 𝑛. We shall make use of the constants 𝑁,𝑀,𝑀 ′,𝐶1,𝐶2 later in the proof.

We will use an induction-like argument to establish bounds on 𝑓 (𝑛). Let us suppose that we
have already proven the bound

𝑔𝑝 ≤ 𝑓 (𝑛) ≤ ℎ𝑝
for all 𝑛 ∈ {2𝑝 + 1, · · · , 2𝑝+1}, for some 𝑝 ≥ 𝑁 . We will show that this can be used to obtain a
similar bound for 𝑓 (𝑛′) for values of 𝑛′ in the set {2𝑝+1 + 1, · · · , 2𝑝+2}. First of all, we have that
𝑎𝑛′ ≥ 𝑎2𝑝+1 for all𝑛 ∈ {2𝑝+1+1, · · · , 2𝑝+2} by the monotonicity of 𝛼 . Thus, by repeatedly applying
the recurrence formula for 𝑓 , we can repeatedly subtract quantities 𝑎𝑖 from the argument of
𝑓 (𝑛′) and add quantities 𝑏𝑖 to its value in order to express 𝑓 (𝑛′) in terms of 𝑓 (𝑛) for some
𝑛 ∈ {2𝑝 + 1, · · · , 2𝑝+1}. We will have to subtract quantities of the form 𝑎𝑖 at most d2𝑝+1/𝑎2𝑝+1e
many times, and the quantities that we subtract will be at most𝐶2𝑏2𝑝+1 by the postulated bounds
on 𝛽 . This means that we have

𝑓 (𝑛′) ≤ ℎ𝑝 +
⌈
2𝑝+1
𝑎2𝑝+1

⌉
·𝐶2𝑏2𝑝+1

Similarly, we have 𝑎𝑛′ ≤ 𝑎2𝑝+2 for all 𝑛′ ∈ {2𝑝+1 + 1, · · · , 2𝑝+2, meaning that we apply the
recurrence and subtract quantities 𝑎𝑖 at least b2𝑝+1/𝑎2𝑝+2c times while still ending up with an
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argument 𝑛 in the interval 𝑛 ∈ {2𝑝 + 1, · · · , 2𝑝+1}. Each of the quantities 𝑏𝑖 added will be at least
𝐶2
1𝑏2𝑝 . Therefore, we have that

𝑓 (𝑛′) ≥ 𝑔𝑝 +
⌊
2𝑝+1
𝑎2𝑝

⌋
·𝐶2

1𝑏2𝑝

Therefore, if we dene 𝑔𝑝+1 and ℎ𝑝+1 as follows:

𝑔𝑝+1 = 𝑔𝑝 +
⌊
2𝑝+1
𝑎2𝑝

⌋
·𝐶2

1𝑏2𝑝

ℎ𝑝+1 = ℎ𝑝 +
⌈
2𝑝+1
𝑎2𝑝+1

⌉
·𝐶2𝑏2𝑝+1

then we have that the inequalities 𝑔𝑝 ≤ 𝑓 (𝑛) ≤ ℎ𝑝 for all 𝑛 ∈ {2𝑝 + 1, · · · , 2𝑝+1} imply the
inequalities 𝑔𝑝+1 ≤ 𝑓 (𝑛′) ≤ ℎ𝑝+1 for all 𝑛′ ∈ {2𝑝+1 + 1, · · · , 2𝑝+2}. By the denition of𝑀 and𝑀 ′,
these bounds hold for the initial values of 𝑔𝑁−1 = 𝑀 ′ and ℎ𝑁−1 = 𝑀 . Thus, by induction, these
inequalities hold for all 𝑝 ≥ 𝑁 − 1 for the sequences (𝑔𝑝), (ℎ𝑝) dened by the above recurrences
and the initial values 𝑔𝑁−1 = 𝑀 ′ and ℎ𝑁−1 = 𝑀 . Note that this implies that

𝑔 dlog2 𝑛e−1 ≤ 𝑓 (𝑛) ≤ ℎ dlog2 𝑛e−1

for all 𝑛 ≥ 2𝑁 .

Now observe that, by the recursive denition of (𝑔𝑝) and (ℎ𝑝), we have that

𝑔𝑝 = 𝑀 ′ +
𝑝∑︁

𝑘=𝑁

⌊
2𝑘
𝑎2𝑘−1

⌋
·𝐶2

1𝑏2𝑘−1

ℎ𝑝 = 𝑀 +
𝑝∑︁

𝑘=𝑁

⌈
2𝑘
𝑎2𝑘

⌉
·𝐶2𝑏2𝑘

Now notice that the sequences are both equal to halving sums evaluated at the index 2𝑝 of
sequences with the same growth order as (𝑛𝑏𝑛/𝑎𝑛), by the moderateness of (𝑎𝑛) and (𝑏𝑛). This
means that, again using moderateness, the sequences 𝑔 dlog2 𝑛e−1 and ℎ dlog2 𝑛e−1 both have the
growth order H(𝔫𝔟/𝔞). Therefore, since 𝑓 (𝑛) is trapped beneath sequences of this growth order
for all 𝑛 suciently large, we have that the growth order of (𝑓 (𝑛)) is also equal to H(𝔫𝔟/𝔞). �

Let’s see an example of this proposition in action. Consider the function 𝑓 : N→ R dened by
the initial values 𝑓 (1) = 𝑓 (2) = 1 and the recurrence

𝑓 (𝑛) = 𝑓
(
𝑛 − b 3√𝑛c

)
+ 1
log𝑛

Using the above proposition, we may let 𝔞 = 𝔫1/3 and 𝔟 = 𝔩−1 and instantly determine that the
growth order of 𝑓 (𝑛) is equal to H(𝔫2/3/𝔩) = 𝔫2/3/𝔩. In other words, the recursive formula for 𝑓
gives rise to the following asymptotic behavior:

𝑓 (𝑛) = Θ
( 𝑛2/3
log𝑛

)
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7.3. Plateau sequences

THIS SECTION UNDER CONSTRUCTION!

In this section, we describe a construction that is useful for constructing inverses of monotone
sequences. As usual, we start by dening a function on sequences, which we will later show is
well-dened as a function on growth orders of sequences.

Denition 30. Given a moderate sequence of positive integers 𝛼 ∈ S(N), dene the
plateau sequence plat(𝛼) to be the sequence consisting of 𝑎1 ones followed by 𝑎2 twos
followed by 𝑎3 threes and so on. That is, dene entry 𝑛 of the sequence plat(𝛼) to be the
smallest positive integer 𝑃 such that 𝑎1 + · · · + 𝑎𝑃 ≥ 𝑛.

Proposition 86. Whenever it is dened, plat(𝛼) is a moderate sequence.

Proof. Let 𝛼 = (𝑎𝑛) ∈ S(N) be a monotone increasing sequence and let (𝑃𝑛) = plat(𝛼). Further
let 𝑛 ≤ 𝑚 ≤ 𝑘𝑛 for some positive integers𝑚,𝑛, 𝑘 ∈ N. By its denition, (𝑃𝑛) is a monotone
increasing sequence, so we have the lower bound

𝑃𝑚 ≥ 𝑃𝑛

Now notice that, because (𝑎𝑛) is moderate, there exists a constant 𝐶 depending only on 𝑘 such
that 𝑎 𝑗 ≥ 𝐶𝑎𝑛 for all 𝑛 ≤ 𝑗 ≤ 𝑘𝑛.

Now notice that, because (𝑎𝑛) is a monotone increasing sequence, we have the inequality

𝑎1 + · · · + 𝑎𝑘𝑃𝑛 ≥ 𝑘 (𝑎1 + · · · + 𝑎𝑃𝑛 )

which proves that, since 𝑎1 + · · · + 𝑎𝑃𝑛 ≥ 𝑛 by denition, we also have 𝑎1 + · · · + 𝑎𝑘𝑃𝑛 ≥ 𝑘𝑛 ≥ 𝑚,
and therefore

𝑃𝑚 ≤ 𝑘𝑃𝑛
Thus, in summary, we have

𝑃𝑛 ≤ 𝑃𝑚 ≤ 𝑘𝑃𝑛
which proves that (𝑃𝑛) = plat(𝛼) is a moderate sequence. �

Next we prove that the growth order of plat(𝛼) depends only on the growth order of 𝛼 .

Proposition 87. If 𝛼, 𝛼 ′ ∈ S(N) are monotone sequences such that 𝛼 ∼ 𝛼 ′, then plat(𝛼) ∼
plat(𝛼).
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7.4. Direct sum

Denition 31. Given two monotone sequences 𝛼, 𝛽 ∈ S(R+) with [𝛼], [𝛽] > 1, dene
their direct sum 𝛼 ⊕ 𝛽 to be the sequence 𝛾 = (𝑐𝑛) dened as follows: if the set

{(𝑎𝑖 + 𝑏 𝑗 , 𝑖, 𝑗) : 𝑖, 𝑗 ∈ N}

is endowed with the lexicographic ordering, then 𝑐𝑛 is dened to be the rst component of
the 𝑛th-smallest element of this set.

First of all, it’s not entirely obvious that this denition is valid at all. Why must the set

{(𝑎𝑖 + 𝑏 𝑗 , 𝑖, 𝑗) : 𝑖, 𝑗 ∈ N}

necessarily have an 𝑛th largest element? For pairs of sequences such as 𝑎𝑛 = 𝑛 and 𝑏𝑛 = 1/𝑛, this
denition does not work, because this set has no smallest element - however, these sequences
do not satisfy the requirements of being monotone and > 1.

To see why this denition is valid, it suces to show that for any𝑀 ∈ R+, there exist at most
nitely pairs (𝑖, 𝑗) ∈ N2 such that 𝑎𝑖 +𝑏 𝑗 < 𝑀 . Since 𝛼, 𝛽 are monotone and have growth orders
> 1, they must be unbounded above, and there must therefore exist 𝑁 ∈ N such that 𝑎𝑛, 𝑏𝑛 ≥ 𝑀

for all 𝑛 > 𝑁 . This means that 𝑎𝑖 + 𝑏 𝑗 ≥ 𝑀 for all (𝑖, 𝑗) with either 𝑖 > 𝑁 or 𝑗 > 𝑁 . Therefore,
in order for 𝑎𝑖 + 𝑏 𝑗 < 𝑀 , we must have both 𝑖 and 𝑗 less than or equal to 𝑁 . But there are only
𝑁 2 such pairs (𝑖, 𝑗) satisfying this bound, meaning that there are only nitely many pairs for
which 𝑎𝑖 + 𝑏 𝑗 < 𝑀 , and our denition is in fact admissible.

Proposition 88. If 𝛼 ∼ 𝛼 ′ and 𝛽 ∼ 𝛽 ′, then 𝛼 ⊕ 𝛽 ∼ 𝛼 ′ ⊕ 𝛽 ′.

Proof. Suppose that 𝛼, 𝛼 ′, 𝛽, 𝛽 ′ are monotone and have growth order ≥ 1 such that 𝛼 ∼ 𝛼 ′ and
𝛽 ∼ 𝛽 ′. Then there exist constants 𝐶1,𝐶2,𝐶3,𝐶4 > 0 such that

𝐶1𝑎
′
𝑛 ≤ 𝑎𝑛 ≤ 𝐶2𝑎

′
𝑛

𝐶3𝑏
′
𝑛 ≤ 𝑏𝑛 ≤ 𝐶4𝑏

′
𝑛

for all 𝑛 ∈ N. Let 𝛾 = (𝑐𝑛) = 𝛼 ⊕ 𝛽 and 𝛾 ′ = (𝑐 ′𝑛) = 𝛼 ′ ⊕ 𝛽 ′. Notice that, for all 𝑖, 𝑗 ∈ N, we have

𝑎𝑖 + 𝑏 𝑗 ≤ 𝐶2𝑎
′
𝑖 +𝐶4𝑏

′
𝑗

and therefore
𝑎𝑖 + 𝑏 𝑗 ≤ max(𝐶2,𝐶4) (𝑎′𝑖 + 𝑏 ′𝑗 )

Since the smallest 𝑛 values of 𝑎′𝑖 + 𝑏 ′𝑗 are all less than 𝑐 ′𝑛 by the denition of 𝛾 , we have that
𝑎𝑖 + 𝑏 𝑗 is less than or equal to max(𝐶2,𝐶4)𝑐 ′𝑛 for each of the pairs (𝑖, 𝑗) corresponding to the
smallest 𝑛 values of 𝑎′𝑖 + 𝑏 ′𝑗 . This means that there are at least 𝑛 pairs (𝑖, 𝑗) for which 𝑎𝑖 + 𝑏 𝑗 is

87



7. More growth order operations

less than or equal to max(𝐶2,𝐶4)𝑐 ′𝑛 , implying that the 𝑛th smallest value of 𝑎𝑖 + 𝑏 𝑗 is under this
value, and therefore

𝑐𝑛 ≤ max(𝐶2,𝐶4)𝑐 ′𝑛
.

By similar reasoning, we may obtain the bound

𝑐 ′𝑛 ≤ max(𝐶−1
1 ,𝐶

−1
3 )𝑐𝑛

which, together with the previous bound, implies that

max(𝐶−1
1 ,𝐶

−1
3 )−1𝑐 ′𝑛 ≤ 𝑐𝑛 ≤ max(𝐶2,𝐶4)𝑐 ′𝑛

and therefore 𝛾 ∼ 𝛾 ′, proving the desired claim. �

This demonstrates that the growth order of the direct sum ⊕ of two sequences depends only on
the growth orders of the two sequences. Therefore, we may dene it elementwise on equivalence
classes of sequences with the same growth order.

Denition 32. For monotone growth orders 𝔞 = [𝛼], 𝔟 = [𝛽] ∈ S(R+)/∼ which are both
> 1, dene their direct sum 𝔞 ⊕ 𝔟 as the growth order [𝛼] ⊕ [𝛽] = [𝛼 ⊕ 𝛽].
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A.1. List of counterexamples

Here’s a list of pathological (but illuminating!) counterexamples appearing throughout the
document:

1. Two incomparable growth orders:
section 2.2, page 13

2. An uncountable antichain of incomparable growth orders:
section 2.2, page 13

3. An increasing sequence of growth orders without a least upper bound:
section 3.4, page 19

4. Two monotone yet incomparable growth orders:
section 4.2, page 24

5. A sequence whose arithmetic subsequences have dierent growth order, in particular
with (𝑎2𝑛) growing faster than (𝑎𝑛):
section 1.3, page 10

6. A sequence whose translations have a dierent growth order, in particular with (𝑎𝑛+1)
growing faster than (𝑎𝑛):
section 1.3, page 10

7. A sequence that is bounded by polynomials yet immoderate:
section 1.3, page 7

8. A sequence that is moderate yet incomparable to 1:
section 4.2, page 24

9. Sequences demonstrating that subtraction of growth orders is ill-dened:
section 3.3, page 16

10. Sequences demonstrating that exponentiation of growth orders is ill-dened:
section 3.3, page 17

11. Sequences demonstrating the composite 𝔞 ◦ 𝔟 can be ill-dened if 𝔞 is immoderate:
section 5.1, page 42

12. Two distinct incomparable growth orders with the same partial sum:
section 4.1, page 22
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13. Two distinct comparable growth orders with the same partial sum:
section 4.1, page 22

14. Two growth orders 𝔞 < 𝔟 such that 𝔞/Σ𝔞 > 𝔟/Σ𝔟:
section 4.3, page 31

15. A growth order which decays faster than each growth order of the form (𝔫𝔩1 · · · 𝔩𝑚)−1,
yet still has divergent partial sums:
section 4.5, page 37

16. Growth orders 𝔞, 𝔟, 𝔠 such that 𝔞 ≥ 1 and 𝔟 ≤ 𝔠 but 𝔞 ◦ 𝔟 ⊥ 𝔞 ◦ 𝔠:
section 5.2, page 44
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