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1 My ”Reduced Inventory”
At the beginning of the minicourse I shared my own personal set of axioms for the integers:

(A1) ∀x ∀y x+ y = y + x Addition is commutative
(A2) ∀x ∀y x · y = y · x Multiplication is commutative
(A3) ∀x ∀y ∀z (x+ y) + z = x+ (y + z) Addition is associative
(A4) ∀x ∀y ∀z (x · y) · z = x · (y · z) Multiplication is associative
(A5) ∀x x+ 0 = x Zero element

But it was pretty clear the audience did not approve of my set of axioms. Someone pointed out
that I’m missing an axiom expressing the fact that multiplication on Z is distributive over addition.
I really didn’t want to add this to my set of axioms, though - after all, maybe it could be proven
from these five axioms, if only I was clever enough to come up with the right proof! And I certainly
wouldn’t want to add a sentence that was already provable to my inventory, in the interest of keeping
it as ”reduced” as possible.

Our prospects of proving distributivity were quickly shattered, though. If we define a kind of
”funny multiplication function” ∗ on Z by letting

x ∗ y = 1

for all x, y ∈ Z, notice that this ”alternative multiplication” satisfies all of our axioms that concern
multiplication, namely (A2) and (A4). In other words, the binary operation ∗ is both commutative
and associative. However, it does not distribute over addition: for instance,

1 ∗ (2 + 2) = 1

1 ∗ 2 + 1 ∗ 2 = 2

meaning that 1 ∗ (2+ 2) 6= 1 ∗ 2+1 ∗ 2. If it were possible to prove distributivity just using the axioms
(A1) through (A5), then it would be possible to prove that ∗ is distributive as well, since the integers
with ordinary addition and ”funny multiplication” also satisfy (A1) through (A5). But in this system,
”funny multiplication” definitively does not distribute over addition! So it must not be the case that
distributivity can be proven from (A1) through (A5). How tragic.

Perhaps this can be remedied by just adding another axiom to our system. For instance, maybe if
we add an extra axiom for distributivity, we’ll have a set of axioms which is capable of proving all the
interesting facts about Z which we’d like to prove:

(A1) ∀x ∀y x+ y = y + x Addition is commutative
(A2) ∀x ∀y x · y = y · x Multiplication is commutative
(A3) ∀x ∀y ∀z (x+ y) + z = x+ (y + z) Addition is associative
(A4) ∀x ∀y ∀z (x · y) · z = x · (y · z) Multiplication is associative
(A5) ∀x x+ 0 = x Zero element
(A6) ∀x ∀y ∀z x · (y + z) = (x · y) + (x · z) Multiplication distributes over addition
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Sadly, it seems there exist systems satisfying these axioms as well which are very different from
the integers we know and love. In particular, if we consider the trivial ring {0} with addition and
multiplication defined as usual, we can check these axioms one by one and verify that each of (A1)
through (A6) holds true in this ring! But clearly there are some very important facts about Z that
aren’t true in the trivial ring, such as the existence of anything other than the zero element, not to
mention any of the nontrivial things that we’d like to prove about Z. So it seems a few more additions
to our reduced inventory are in order. Let’s postulate the existence of a multiplicative identity, and
that this multiplicative identity is distinct from zero:

(A1) ∀x ∀y x+ y = y + x Addition is commutative
(A2) ∀x ∀y x · y = y · x Multiplication is commutative
(A3) ∀x ∀y ∀z (x+ y) + z = x+ (y + z) Addition is associative
(A4) ∀x ∀y ∀z (x · y) · z = x · (y · z) Multiplication is associative
(A5) ∀x x+ 0 = x Zero element
(A6) ∀x ∀y ∀z x · (y + z) = (x · y) + (x · z) Multiplication distributes over addition
(A7) ∀x x · 1 = x Multiplicative identity
(A8) ¬(1 = 0) Zero and one are distinct

But alas! It seems that these properties are also insufficient to characterize the integers uniquely.
For instance, the set of real numbers R with addition and multiplication as it is usually defined also
satisfies all each of these axioms. So if, say, we wanted to prove from these axioms that there exist
nonzero elements in the integers without multiplicative inverses:

∃x ¬(x = 0) ∧ ¬(∃y x · y = 1)

we would know instantly that proving such a thing is impossible: for this isn’t true at all in the system
R, even though R satisfies axioms (A1) through (A8).

In general, it we assemble a set of sentences (”axioms”) which we think encapsulate all the essential
properties of a system that we care about, such as Z, we might ask ourselves the questions ”What
theorems are we capable of proving with these axioms? Can we prove all of the sentences that are true
about Z? Do these axioms distinguish Z from all other rings?” The line of attack that a model theorist
takes to answering these questions is to search for other algebraic systems that satisfy the same axioms,
which are called models of those axioms. Then, if we find some alternative system satisfying all the
axioms from our inventory, but which fails to satisfy a sentence ψ that is satisfied in Z, then we know
that our axioms are incapable of proving ψ, and therefore incapable of proving everything there is to
prove about Z and distinguish it from other models. The techniques developed by model theorists lead
to some profound philosophical insights, as well as some really bizarre algebraic structures.

2 Syntax: First-order Logic
In model theory, when we refer to a ”theorem”, we are really referring to a sentence in first-order
logic, which is very different from writing theorems in plain English. In particular, there is a very
limited set of symbols that we are allowed to use to formulate a sentence in first-order logic. These
symbols are:

1. Variable names, like x1, x2, x3, · · · or x, y, z, · · ·

2. Logical operators, like ∧ ”and”, ∨ ”or”, ¬ ”not”, and → ”implies”

3. Quantifiers, i.e. the universal quantifier ”for all” ∀ and the existential quantifier ”there
exists” ∃

4. The equality sign =

5. Parentheses () used for disambiguation
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Not just any combination of these symbols is allowed. For instance, something like ∀∀∃∀¬¬() is
not a ”grammatically correct” sentence in first-order logic. There’s a very specific set of rules used to
describe how one is allowed to build a ”grammatically correct” sentence, but we won’t go into it here.
(If you want to see a detailed treatment, see Chang and Kiesler’s Model Theory: Third Edition, which
is where I learned about all this.) Notice that there is a difference between ”nonsense” like ∀∀∃∀¬¬(),
which is not even a sentence, and sentences that are always false, like the following:

∃x ¬(x = x)

We can make sense of the above sentence: intuitively, it claims that there exists an x that is not equal
to itself. Of course, this is false no matter what kind of structure we consider, but as a sentence, it
does make sense - it’s just not true. Similarly, there are sentences that are always true, such as

∀x x = x

Such sentences are called valid, whereas sentences that are always false are called refutable.

Of course, we cannot say very many interesting things using this bare-bones set of symbols given to
us by first-order logic. When doing model theory, we usually consider an additional language which
introduces a few more symbols. These symbols can be of one of three different types, which determine
how they are used syntactically:

1. Function symbols, each of which has an arity describing how many arguments it takes. For
instance, + is a 2-ary function symbol in our language for arithmetic, since it represents a function
of two arguments. The negative sign − could be a 1-ary function symbol, since it represents a
function of one arguments that maps a number to its additive inverse.

2. Relation symbols, each of which also has an arity describing the number of arguments it takes.
For example, ≤ is a 2-ary relation symbol in our language for arithmetic, since it represents a
relation that takes two numbers and determines whether or not the first number is less than or
equal to the second number. In the language of set theory, the symbol ∈ is also a 2-ary (or,
binary) relation symbol.

3. Constant symbols, which represent specific elements of the system under consideration. For
example, 0 and 1 might be constant symbols in our language for arithmetic, which we interpret
as the additive and multiplicative identities respectively.

There is a lot of technical detail that goes into defining how these symbols interact with each
other and with the ”general purpose” first-order logic symbols. We won’t go into the tedious inductive
definition, but here’s a small example. If our language is given by L = {f, g,R, S, c1, c2}, where f
is a unary function symbol, g is a ternary function symbol, R is a ternary relation symbol, S is a
binary relation symbol, and c1, c2 are constant symbols, then the following would be an example of a
well-formed sentence in this language:

∀x (∃y S(g(x, y, c1), g(x)) → S(x, c2) ∧R(y, c1, c2))

What on earth is this sentence saying? Who knows - it could mean many things, depending on
what exactly the symbols f, g,R,G, c1, c2 are chosen to represent, or how they’re ”interpreted”. Syn-
tactically, this is just a sequence of symbols. In the next section, we’ll see how they interact with the
”meaning” that is assigned to them using models.

For a few actual examples of languages that might be used to formalize certain mathematical
theories, consider the following:

• L = {+, ·,−,≤, 0, 1} is a language that might be used to talk about arithmetic. It has two binary
function symbols, one unary function symbol, one binary relation symbol, and two constant
symbols.

• L = {≤} is a language that might be used to describe the ordering on an ordered set.
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• L = {∈} is the language that is often used for doing formal set theory, for instance Zermelo-
Fraenkel Set Theory with Choice, sometimes abbreviated ZFC, in which ∈ is used to represent
the ”membership” relation.

• L = {} is the pure identity language. It has no function symbols and no constant symbols,
and the only relation symbol that we have access to in this language is the equals sign = (which
is part of the ”standard language” for doing first-order logic anyways).

In addition to the long list of rules describing how ”grammatically correct” sentences of the language
L can be formed, there is also a set of rules describing how sentences can be formally manipulated
to write proofs. The process of logical inference can be described purely algorithmically using this
formal language, so that you could be given a set of symbols that mean nothing to you whatsoever,
and yet you could nevertheless write a proof of an elaborate sentence simply by mechanically applying
the rules of inference. Once again, I won’t list all of the inference rules of first-order logic (see Chang
and Kiesler if you’d like more detail).

3 Semantics: Models
Moving beyond just first-order logic, where a sentence is merely a sequence of symbols, we may begin
to look at models, where sentences take on ”meaning”. Given a language L, consisting of some function,
relation and constant symbols, a model for that language consists of the following data:

1. An underlying set A, called the universe, which will contain the elements of the model

2. For each n-ary function symbol of L, an actual function An → A corresponding to that symbol

3. For each m-ary relation symbol of L, an actual relation ⊂ Am corresponding to that symbol

4. For each constant symbol of L, an element ∈ A corresponding to that symbol

For each function symbol of the language L, the actual function corresponding to it is called
the interpretation of that symbol in the given model. Similarly, the relation corresponding to a
given relation symbol is called its interpretation, and the same goes for the element of the universe
corresponding to a certain constant symbol. If we have a language

L = {f1, f2, · · · , R1, R2, · · · , c1, c2, · · · }

where f1, f2, · · · are function symbols (each with their own arity), and R1, R2, · · · are relation
symbols (also with their own arity), and c1, c2, · · · are constant symbols, then we might denote a
model of this language as follows:

A = 〈A, g1, g2, · · · , S1, S2, · · · , a1, a2, · · · 〉

where A is a universe of the model, g1, g2, · · · are the functions corresponding to the symbols f1, f2, · · · ,
and S1, S2, · · · are the relations corresponding to the symbols R1, R2, · · · , and finally a1, a2, · · · ∈ A
are the elements of the universe corresponding to the constant symbols c1, c2, · · · .

To continue a previous example, if we consider the familiar language

L = {+, ·,≤, 0, 1}

our ”typical model” for this language is the integers with traditional integer arithmetic:

〈Z,+, ·,≤, 0, 1〉

However, there are other models of the same language. For instance, the following is also a model of
the same language:

〈Z,+, f,≤, 0, 1〉
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where f : Z2 → Z is defined by f(x, y) = 1. This is our ”pathological multiplication” function that we
defined earlier to show that distributivity was not provable from (A1) through (A5). We also have the
following model:

〈{0},+, ·,≤, 0, 1〉

This is the trivial ring, which we used earlier to show that the distinctness of the multiplicative identity
and the additive identity does not follow from (A1) through (A7). And finally, the following is yet
another model of the same language:

〈R,+, ·,≤, 0, 1〉

which is the ring of real numbers, used to prove that many important properties of Z cannot be proven
using merely (A1) through (A8). Of course, there are many more models of this language. We could
use something as strange as

〈N, ·, ·, | , 49, 50〉

Of course, this model would not satisfy very many of the axioms from our list earlier, but it would
nevertheless be a model of the language L.

One of the most significant problems we’re concerned with as model theorists is how to distinguish
between two different mathematical structures using our language. That is, given two models of a
language, can we come up with some sentence which holds true in one of the models, but not in
the other, thereby setting them apart from a first-order logic standpoint? For instance, consider the
following two models of the language considered above:

A = 〈Z,+, ·,≤, 0, 1〉

B = 〈Q,+, ·,≤, 0, 1〉

Can we find a first-order sentence that discriminates between integer arithmetic and rational arith-
metic? The answer is yes, and it may not take you long to come up with such a sentence. An example
is the following sentence:

ϕ =
(
∀x ∃y y + y = x

)
In plain english, φ says that for all x, there exists y such that y + y = x. In other words, we can
”halve” any element of the universe. Notice that ϕ is satisfied in B, the rational numbers, but it is not
satisfied in A, the integers. The model-theoretic way of saying this would be that A is not a model
of ϕ, whereas B is a model of ϕ. As another example, consider the following pair of models:

A = 〈Q,+, ·,≤, 0, 1〉

B = 〈R,+, ·,≤, 0, 1〉

How can we distinguish between the rationals and the reals in terms of their first-order properties?
One way is to use the fact that every nonnegative real number has a real square root, but it is not
the case that every nonnegative rational number has a rational square root. We can formulate this in
first-order logic as follows:

ψ =
(
∀x (0 ≤ x) → (∃y y · y = x)

)
so that A is not a model of ψ, but B is a model of ψ.

We might also consider trying to distinguish between these algebraic structures in a simplified
language. For instance, we might consider the smaller language L = {+,≤}, and try to distinguish
between some of the above algebraic structures just in terms of how their addition and inequalities
behave. (That is, we are treating them as ordered groups rather than ordered rings.) If we now consider

A = 〈Z,+,≤〉

B = 〈Q,+,≤〉

and try to distinguish between these two models, it appears that we don’t have much work to do,
since the sentence ϕ that we used to distinguish between these models before only used the symbol +
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anyways. Hence, ϕ is also a model in this reduced language, so we may again use it to distinguish A
from B. What about our second example?

A = 〈Q,+,≤〉

B = 〈R,+,≤〉
Can we find a first-order sentence that holds in one of these models, but not the other?

We might simplify our language even further to consider just L = {≤}, and try to use this language
to distinguish between different ordered sets in terms of their first-order properties. For instance, using
this language, can we distinguish between the ordering of the natural numbers and the integers?

A = 〈N,≤〉

B = 〈Z,≤〉
Certainly, for the orderings of these two sets are very different. For instance, N has a smallest element
and Z does not, so we can use the sentence

ζ =
(
∃x ∀y x ≤ y

)
to discriminate between these models, since A is a model of ζ but B is not. What about the ordering
of the integers and the ordering of the rational numbers?

A = 〈Z,≤〉

B = 〈Q,≤〉
This one is a little bit trickier, but after a bit of investigation, we might use the fact that Q is a dense
ordering, that is, between any two elements of Q lies another element of Q. This is not the case for Z,
since, for instance, there are no integers between 0 and 1 (as you very well know by now). Let’s write
this as a first-order sentence:

ξ =
(
∀x ∀y ¬(y ≤ x) → (∃z ¬(z ≤ x) ∧ ¬(y ≤ z))

)
Note that we’re using ¬(y ≤ x) as a kind of ”workaround” to represent the strict inequality x < y
using only the one symbol ≤ that is available to us.

4 Completeness and compactness
And now, here’s a brief treatment of two of my favorite theorems from model theory. Both of their
statements seem kind of mundane at first glance, but they can be used to come up with some strange
and bizarre examples of models that ”masquerade” as models that we are very familiar with, while
actually having huge structural differences that are untouchable by first-order logic.

Before introducing these theorems, we first need to know what it means for a set of sentences to be
consistent. Given a fixed language L and a set of sentences Σ (possibly infinite) of that language, we
say that Σ is consistent if it is not possible to prove a contradiction from the sentences in Σ. That
is, if we take the sentences in Σ as assumptions, it is not possible to construct a proof of a sentence
taking the form ϕ ∧ ¬ϕ. If it is possible to prove a contradiction using premises from Σ, then we say
that Σ is inconsistent. It makes sense that we would care about studying which sets of sentences are
consistent and which ones are inconsistent, because if we are trying to construct a set of axioms for
some mathematical system like integer arithmetic or number theory, we would not want our theory to
contain any contradictions, so it is important that our set of axioms be consistent.

If you pick a sentence ϕ over L, the set Σ = {ϕ,¬ϕ} is an obvious example of an inconsistent set
of sentences, and a slightly less obvious example is the set

Σ = {(ϕ→ ϕ) → ϕ, ϕ→ (¬ϕ)}

However, it is not always so easy to tell whether a set of sentences over some language is inconsistent just
by inspection. Consider, for instance, the following set of senteces over the language L = {f, g, c, d, e}
where f, g are binary function symbols and c, d, e are constant symbols:
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ϕ1 ∀x ∀y (f(x, y) = f(y, x)) ∧ (g(x, y) = g(y, x))
ϕ2 ∀x ∀y ∀z (f(x, f(y, z)) = f(f(x, y), z)) ∧ (g(x, g(y, z)) = g(g(x, y), z))
ϕ3 ∀x (f(x, c) = x) ∧ (g(x, d) = x) ∧ (f(x, e) = x) ∧ ¬(c = e)
ϕ4 ∀x ∀y ∀z g(x, f(y, z)) = f(g(x, y), g(x, z))
ϕ5 ∀x ∃y f(x, y) = c

This set of sentences is actually inconsistent. In fact, some pair of them ϕi, ϕj is inconsistent.
Can you figure out which two sentences are inconsistent? And is there something familiar about these
sentences, even though the function symbols f, g and the constant symbols c, d, e are unfamiliar?

Of course, if a set of sentences Σ is inconsistent, then it cannot have any models, for if ϕ∧¬ϕ is a
contradiction implied by the sentences in Σ, then any model A of Σ would have to satisfy ϕ∧¬ϕ. But
this is impossible, because a model cannot satisfy both ϕ and ¬ϕ simultaneously. Hence, inconsistent
sets of sentences have no models. But is the converse true? That is, if a set of sentences Σ does not give
rise to a logical contradiction, does there necessarily exist a model that satisfies all of the sentences
σ ∈ Σ? The Completeness Theorem answers this question in the affirmative.

Theorem (Completeness Theorem). If Σ is a consistent set of first-order sentences in some language
L, then it has a model.

This theorem seems rather tame, but as it turns out, the proof is rather technical. For details, you
can find a full proof at the beginning of Chapter 2 of Chang and Kiesler’s Model Theory: Third Edition.
Although it seems almost obvious, this theorem has an interesting philosophical interpretation as well:

”Logical consistency is equivalent to metaphysical possibility.”

That is, if some set of assertions isn’t logically contradictory, then it is ”metaphysically possible”,
that is, there is some ”possible world/universe” (i.e. model) in which those sentences all hold true.
Given a consistent set of sentences, it’s not at all obvious how to actually construct a set of functions,
relations and constants corresponding to the symbols of the language that simultaneously satisfies all
of them - hence the technicality of the proof.

The true power of the Completeness Theorem is unlocked through its partnership with the Com-
pactness Theorem:

Theorem (Compactness Theorem). If Σ is a set of first-order sentences such that every finite subset
Σ′ ⊂ Σ is consistent, then Σ is consistent.

This one is far less intuitive. If we have an infinite set of sentences Σ and we want to prove that
it is consistent, it suffices to prove that each finite subset of Σ is consistent. But why? Well, suppose
for the sake of contradiction that Σ were inconsistent. Then there would have to exist some proof of
a contradiction ϕ ∧ ¬ϕ using the sentences from Σ as hypotheses. But every proof consists of a finite
sequence of logical inferences - so any proof using sentences from Σ as hypotheses could only make use
of at most finitely many sentences from Σ. If we let Σ′ be the set of sentences of Σ that are used in a
given proof of ϕ ∧ ¬ϕ, then we have that Σ′ is finite, and also inconsistent, since the sentences of Σ′

can be used to prove ϕ ∧ ¬ϕ. Therefore any inconsistent set of sentences Σ has an inconsistent finite
subset Σ′ ⊂ Σ. By contrapositive, if every finite subset Σ′ ⊂ Σ is consistent, then Σ must be consistent!

Okay, so how are these theorems used together? Here’s an illuminating example. We have already
considered the model of the language L = {+, ·,≤, 0, 1} consisting of the set of integers with the
ordinary interpretations of each of these symbols, i.e. the ”standard model”:

Z = 〈Z,+, ·,≤, 0, 1〉

Let us now consider a slightly modified language, in which we add one additional constant symbol:
L′ = {+, ·,≤, 0, 1, c}. Notice that if we pick any integer n ∈ Z, then

〈Z,+, ·,≤, 0, 1, n〉

is a model of this modified language, in which the interpretation of the symbol c is the element n ∈ Z.
Now, let us take all of the sentences σ of the original language L that are true in the model Z and
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collect them together into a set of sentences Σ. Certainly Σ is a consistent set of sentences of L, since Z
is a model of this set of sentences, and no inconsistent set of sentences can have a model. Notice that Σ
is also a set of sentences of the modified language L′ - it just happens that none of these sentences uses
the newly added constant symbol c. Now, let us define another set of sentences Φ = {ϕ1, ϕ2, ϕ3, · · · }
of the language L′ as follows:

ϕ1 1 ≤ c
ϕ2 1 + 1 ≤ c
ϕ3 1 + 1 + 1 ≤ c
ϕ4 1 + 1 + 1 + 1 ≤ c
· · · · · ·

The first sentence ϕ1 states that the interpretation of c is greater than one, the second sentence ϕ2

states that it is greater than two, and so on. Notice that if we choose some n ∈ Z, the model

〈Z,+, ·,≤, 0, 1, n〉

is never a model of all of the sentences of Φ, since there is no integer that is simultaneously greater
than 1, and greater than 1 + 1, and greater than 1 + 1 + 1, and so on.

Finally, let us consider the set of sentences Σ ∪ Φ. This consists of all sentences of L′ that do not
use the symbol c and are satisfied in 〈Z,+, ·,≤, 0, 1〉, together with all of the sentences ϕi described
above. It’s not immediately obvious whether Σ∪Φ is consistent or inconsistent - after all, the models
〈Z,+, ·,≤, 0, 1, n〉 don’t satisfy all of their sentences, so we don’t immediately know that Σ ∪ Φ is
consistent. This is where the Compactness Theorem comes in. By Compactness, if every finite subset
of Σ ∪ Φ is consistent, then the whole set is consistent. So let us suppose that Ψ ⊂ Σ ∪ Φ is a finite
subset of this set of sentences, so that Ψ = {ψ1, · · · , ψk}. Since at most finitely many of the sentences
ϕi appears in Ψ, there must exist a maximum N such that ϕN ∈ Ψ. But if N is this maximum value,
then we have that

〈Z,+, ·,≤, 0, 1, N〉

is a model of Ψ: all of the sentences of Ψ taken from Σ must be true in this model because they are
true in 〈Z,+, ·,≤, 0, 1〉; and all of the sentences of Ψ taken from Φ must be true in this model because
they all take the form ϕi with i ≤ N by the definition of N , and so the integer N ∈ Z is greater than
or equal to i for all ϕi ∈ Ψ. Therefore, since every finite subset Ψ ⊂ Σ ∪Φ is consistent, we have that
all of Σ ∪ Φ is consistent by Compactness.

Now we are ready to apply Completeness. Since Σ ∪ Φ is consistent, we can say that there exists
a model satisfying all of the sentences of Σ ∪ Φ. In this model, every theorem of first-order logic that
is true about the ordinary integers also holds, yet there exists an element of this model that is greater
than 1, 2, 3, and so on. If 〈A, f, g,R, 0A, 1A, a〉 is this model, we can throw away the extra constant
a ∈ A to obtain another model of our original language L:

Z′ = 〈A, f, g,R, 0A, 1A〉

Every sentence that is true of Z (i.e. the sentences of Σ) is also true of Z′ and vice versa. (In model-
theoretic terminology, we say that Z and Z′ are elementarily equivalent and write Z ≡ Z′ to denote
this relationship.) Yet somehow Z′ also contains an ”infinite integer” that is greater than 1, 2, 3, and so
on, despite being indistinguishable from Z by any first-order sentence. If we are concerned with being
able to distinguish between mathematical systems with different structures using first-order sentences,
this is a nightmare. How could two structures that are so different have precisely the same theorems?

5 Exercises and teasers
1. Can you distinguish between the models 〈{1, 2}〉 and 〈{1, 2, 3}〉 in the pure identity language?

How about 〈1, 2, 3〉 and 〈N〉? How about 〈N〉 and 〈R〉?
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2. In the language L = {≤}, can you distinguish between the following pairs of models?
A = 〈[0, 1],≤〉 B = 〈[0, 2],≤〉
A = 〈[0, 1],≤〉 B = 〈[0, 1] ∪ [2, 3],≤〉
A = 〈[0, 1],≤〉 B = 〈[0, 1) ∪ (2, 3],≤〉
A = 〈N,≤〉 B = 〈N + Z,≤〉

3. A formula in a language L is similar to a sentence, except that it may have free variables. An
example in the language of a ring is the formula ϕ(x) = (∃y y + y = x), which in plain English
says ”x is the double of some number”. A formula is not satisfied or not satisfied in a given
model, since its truth value may depend on the input x. For instance, in 〈Z,+, ·, 0, 1〉, we have
that ϕ(2) is true but ϕ(3) is false, and we say that 2 satisfies ϕ but 3 fails to satisfy ϕ. In
the model 〈Q,+, ·, 0, 1〉, both 2 and 3 satisfy ϕ.

Given a model A with universe A, and a subset S ⊂ A, we say that S is definable if there
exists a formula ϕ with one free variable such that S is the set of all a ∈ A satisfying ϕ. Sim-
ilarly, we say that an element a ∈ A is definable if there exists a formula ϕ such that a is the
unique element of A satisfying ϕ, i.e. if the set {a} ⊂ A is a definable subset. For instance, in
the model 〈Z,+, ·, 0, 1〉, the element 2 is definable because it is defined by ϕ(x) = (x = 1 + 1),
and the subset S ⊂ Z of even numbers is definable because it is the set of all integers satisfying
ψ(x) = (∃y y + y = x).

Here are some questions to explore on your own:

(a) Using the language L = {+, ·, 0, 1}, what subsets of the model 〈Z,+, ·, 0, 1〉 can you define?
We have already defined the set of even numbers... can you define the set of integers divisible
by 3? The set of integers ≡ 1 mod 7? The set of perfect squares? The set of primes? The
set of powers of 2?

(b) Using the smaller language L = {+}, what subsets of the model 〈Z,+〉 can you define? Can
you define the set of perfect squares? Can you define the subset N ⊂ Z? Can you define the
element 0 ∈ Z? Can you define the element 1 ∈ Z?

(c) Given a model 〈A〉 of the pure identity language, can you determine all of the definable
subsets of A?

(d) Can you prove that if L is finite and A = 〈A, · · · 〉 is a model whose universe is a countably
infinite set, then there exists an undefinable subset of A? Does there necessarily exist an
undefinable element of A?

(e) Can you find a finite language and a model of that language where all elements are unde-
finable? Where no elements are undefinable? Where exactly one element is undefinable?
Where exactly two elements are undefinable?

4. Consider the language L = {+, ·,≤, 0, 1} and the model R = 〈R,+, ·,≤, 0, 1〉. The real numbers
are an Archimedean Field, meaning that for any real number ε > 0, there exists a real number
N ∈ R in the form N = 1 + 1 + · · · + 1 such that Nε > 1. Can you prove using Compactness
and Completeness that there exists a model R′ of the same language which has all the same true
sentences as R (i.e. R′ ≡ R) and yet fails to be Archimedean?

5. Consider the language L = {≤} and the model A = 〈N,≤〉. You have learned that the natural
numbers are well-ordered, meaning that every subset of N has a least element. Can you prove
using Compactness and Completeness that there is a model A′ having all the same true sentences
as A (i.e. A′ ≡ A) such that the universe of A′ is not well-ordered? Can you actually construct
such a model, in addition to showing that it exists?

If you solve any of these exercises, come tell me about your solution! If you fail to solve any of
these exercises, tell me about your failure!

If you enjoyed the minicourse and notes, and are interested in learning more about model theory,
here are some more things you might like to read about:
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• I learned model theory from Chang and Kiesler’s Model Theory: Third Edition, which I would
highly recommend to anyone who has some proof background and enough patience to slowly
work through pages of dense proofs. For context, it took me about a month and a half to work
through the first one-and-a-half chapters of this book - it’s very dense! But in my opinion, it’s
well-written and the exercises are really interesting. Also, you can find all of my model theory
notes and some of my solutions to exercises on my webiste!

• Another pair of theorems from model theory with profound philosophical implications are the
Löwenheim-Skolem Theorems, which address the possible cardinalities that the universe of a
model satisfying certain sentences can have. In particular, they say that given a model of a finite
language L, there always exists an elementarily equivalent model with any given cardinality. For
instance, there exists a model with all the same true sentences as 〈Z,+, ·,≤, 0, 1〉, but with an
uncountably infinite universe! This is pretty unbelievable.

• In ZFC (a common set of axioms for set theory), the Continuum Hypothesis (CH) states
that there does not exist a set A whose cardinality is strictly between the cardinality of N and the
cardinality of R, so that |N| < |A| < |R|. That is, |R| is the ”next biggest” cardinality after |N|.
It turns out that this is unprovable in ZFC, and in fact there exist both models of ZFC where CH
is true, and models where CH is false. This can be proven using an advanced model-theoretic
technique called forcing.

• There is a really cool technique for explicitly defining ”weird counterexample models” using a
mathematical construction called an ultraproduct, which makes use of a set-theoretic structure
called an ultrafilter. These are really advanced topics, but in my opinion one of the most
amazing and mind-boggling ideas in model theory.
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