
3 Fixed-point iteration

Here are the student questions that I’m attempting to answer thoroughly with this write-up:

• When does �xed-point iteration converge/diverge at a certain �xed point?

• In the convergence criterion for FPI, what exactly does "su�ciently close initial guesses"
mean?

• How dowe know (rigorously) that FPI converges in certain cases? When can we guarantee
convergence?

• How can we say whether 5 0(q) 2 [�1, 1] if we don’t actually know the value of q yet?

• What if FPI diverges for one of the �xed points of a certain function? Is it impossible to
approximate?

3.1 Cobweb plots and convergence

One useful way of visualizing �xed-point iteration is to use a cobweb plot. Given a function 5
with a �xed point q , plot the graphs of ~ = G and ~ = 5 (G) on the same plane, like this:

Mark the initial guess G0 on the x-axis:
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3 Fixed-point iteration

Find the point (G0, 5 (G0)) on the curve ~ = 5 (G) corresponding to this x-value. Notice that since
FPI is de�ned using the recurrence G=+1 = 5 (G=), this is the same as the point (G0, G1).

Now, draw a horizontal line segment connecting this point to the line ~ = G , obtaining the point
(G1, G1), and then �nd the point (G1, 5 (G1)) by drawing another vertical line segment from this
point to the corresponding point on ~ = 5 (G) with the same x-value. Notice that this point is
the same as (G1, G2).
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3 Fixed-point iteration

Now you can repeat this process starting with the point (G1, G2) rather than (G0, G1). By repeating
this process, you will obtain a sequence of points (G0, G1), (G1, G2), (G2, G3) and so on, and by
examining how they appear on the graph, you can tell whether or not FPI converges with the
given starting value. For instance, here’s what a zoomed-in version of the following cobweb
plot might look like after several iterations:

See how the estimates seem to be getting closer and closer to the �xed point? This is a case
in which �xed-point iteration is successful at producing a sequence of increasingly accurate
approximations. Here’s an example with a di�erent function where it does not turn out so well:
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3 Fixed-point iteration

Notice how the approximations move away from the actual �xed point after a few iterations?
If you try sketching some more examples by hand, you might notice that when the curve
~ = 5 (G) crosses the line ~ = G with a very steep slope, FPI fails to converge to the �xed point in
question, but when it crosses ~ = G with a very shallow slope, FPI converges to that �xed point,
as long as the initial guess is close enough to start with. To be speci�c, we will have guaranteed
convergence if the slope of the function’s curve has magnitude less than one at the �xed point, or
if |5 0(q) | < 1, where q is the �xed point.

By the way, there are a couple of very neat cobweb plotting tools online, like this one.

3.2 Rigorous proof of convergence

A rigorous proof that FPI converges requires you to use - you guessed it - Taylor’s Theorem!
Roughly, Taylor’s Theorem tells us that "well-behaved" (twice-di�erentiable) functions behave
approximately like linear functions in small neighborhoods of each of their points, and it’s
much easier to determine how FPI behaves on linear functions than on arbitrary functions.

Suppose we have a function 5 : [0,1] ! R that is twice-di�erentiable in the interval (0,1),
and has a �xed point q 2 [0,1]. By Taylor’s Theorem, we may expand 5 into its Taylor Series
centered at G = q , so that we have

5 (G) = 5 (q) + (G � q) 5 0(q) + O((G � q)2)

or, since q is a �xed point,

5 (G) = q + (G � q) 5 0(q) + O((G � q)2)
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3 Fixed-point iteration

In case you’re confused by the big-O notation on the right side of the equation, you just need
to know that this means that 5 (G) is equal to q + (G � q) 5 0(q) plus some error term which
we don’t know the exact value of, but which is guaranteed to be less than ⇠ (G � q)2 for all
G , for some constant ⇠ > 0. Notice than the error term of ⇠ (G � q)2 shrinks to zero much
faster than (G � q) 5 0(q) as G gets closer and closer to q , meaning that the relative error in this
approximation gets better and better as G gets closer to q . (Assuming, for now, that 5 0(q) is
< 0. In that case, things are a little more complicated.)

Now, recall that �xed-point iteration starts with some initial guess G0 for the value of the �xed
point, and calculates successive approximations as follows:

G=+1 = 5 (G=)

We may also de�ne a sequence of numbers measuring the error between the FPI approximations
G= , and the actual value of q :

4= = |G= � q |

If things go well (i.e. if FPI converges) then these error values should tend towards zero, meaning
that our approximations are getting arbitrarily close to the actual value.

Now, plugging G = G= into the approximation that we obtained from Taylor’s Theorem, we
have the following:

5 (G=) = q + (G= � q) 5 0(q) + O((G= � q)2)

However, since G=+1 = 5 (G=) by de�nition, we can rewrite this as follows:

G=+1 = q + (G= � q) 5 0(q) + O((G= � q)2)

or, subtracting q from both sides,

G=+1 � q = (G= � q) 5 0(q) + O((G= � q)2)

If we take absolute values of both sides (and use the triangle inequality), we can rewrite this as

|G=+1 � q | = |G= � q | · |5 0(q) | + O(|G= � q |2)

but this actually expresses a relationship between the errors of successive terms:

4=+1 = |5 0(q) | · 4= + O(42=)

Using the de�nition of big-O notation, this gives us the following inequality, for some unspeci�ed
constant ⇠:

4=+1  |5 0(q) | · 4= +⇠4
2
=

or
4=+1 

�
|5 0(q) | +⇠4=

�
· 4=

Hence, the term |5 0(q) | +⇠4= tells us the maximum factor by which the error is multiplied after
one iteration. This means that if we guarantee that this quantity is less than one, then we will
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3 Fixed-point iteration

know that the error is decreasing. In particular, if we are able to choose an initial guess G0 that is
su�ciently close to q such that the error 40 is less than

1 � |5 0(q) |

⇠

then we will know that |5 0(q) | +⇠40 < 1, meaning that 41 < 40. Then, by similar reasoning,
we could show that 42 < 41, and 43 < 42, and so on. Hence, if our initial guess has an error
satisfying

40 <
1 � |5 0(q) |

⇠

then the errors are guaranteed to shrink to zero, since they will be shrinking by a factor that
keeps getting smaller and smaller at each iteration. When the errors converge to zero, of course,
the approximations G= must be converging to the true �xed point value q .

Of course, this is hardly practical if we don’t actually know the exact value of the constant ⇠ .
Taylor’s Theorem allows us to actually determine one possible value of this constant: it tells us
that

⇠ =
|5 00(b) |

2
for some b 2 [0,1]. Of course, this still does not actually tell us the precise value of b - but it
does allow us to give an upper bound. If we are able to determine the maximum value of |5 00(G) |
on [0,1] (let’s call it"), then we can say that the constant ⇠ guaranteed by Taylor’s Theorem
satis�es

⇠ 
"

2
which means that if we conservatively choose our �rst estimate G0 such that the error is less
than

40 <
1 � |5 0(q) |

"/2


1 � |5 0(q) |

⇠

then our estimates are also guaranteed to converge. Hence, a precise su�cient condition for
convergence of FPI is the following:

40 <
1 � |5 0(q) |

1
2 maxG 2 [0,1 ] |5 00(G) |

This is not to say that other initial guesses G0 will de�nitely fail to converge - there may well be
other initial guesses that work. This is just one criterion that will guarantee convergence.

Notice, by the way, that if |5 0(q) | > 1, the above criterion cannot be satis�ed, since 1 � |5 0(\ ) |
will be negative, but the value 40 can only be nonnegative. This corresponds to our observation
that when |5 0(q) | > 1, �xed-point iteration will diverge.
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3 Fixed-point iteration

3.3 Convergence without knowing the fixed point

One question that might have occurred to you is the following: if we don’t know the actual
value of a �xed point q of some function 5 (G) (which we probably don’t, if we’re trying to
approximate it) then how can we determine the magnitude of the derivative |5 0(q) | to determine
whether or not FPI converges to that �xed point? Isn’t it impossible to determine convergence
without knowing the �xed point in the �rst place?

As a matter of fact, it is possible to determine convergence without knowing q beforehand. This
is because, to know that FPI converges, we don’t need to know the exact value of 5 0(q) - we
just need to know whether it has magnitude less than 1. And if we know that q lies within
some interval [0,1], and that 5 0(G) is bounded between �1 and 1 for all G inside of that interval,
then we can conclude that |5 0(q) | < 1 without ever calculating its value explicitly.

To take an example, consider the following function:

5 (G) = 4G + 2G

Without graphing this function, let’s �gure out how many �xed points it has, and whether
or not FPI converges to those �xed points. First of all, a �xed point of 5 is a solution to the
equation

4G + 2G = G

or, by subtracting G from both sides,
4G + G = 0

Notice that both 4G and G are increasing functions of G , meaning that 4G + G is also a strictly
increasing function of G . Hence, 4G + G cannot have more than one zero - since, once it crosses
the x-axis, it cannot "go back down" again. So now we just need to determine whether it has
one zero or no zeros at all.

To show that it does in fact have a zero, consider the following two values:

5 (0) � 0 = 40 + 0 = 1

5 (�1) � (�1) = 4�1 � 1

We can see that 5 (0) > 0, and also that 5 (�1) < �1, since 1/4 is less than 1. This means that
5 (G) � G must change signs from negative to positive somewhere between G = �1 and G = 0.
This means that it must have a zero somewhere between these two x-values, and therefore 5
must have a �xed point somewhere in the interval (�1, 0). (Technically, this relies on the fact
that 5 is a continuous function, and uses the Intermediate Value Theorem.)

So now we know that there’s a unique �xed point between G = �1 and G = 0. How can we
determine whether FPI converges to this �xed point? Let’s consider the derivative of 5 :

5 0(G) = 4G + 2

Recall that the function 4G is always positive, meaning that 5 0(G) is always greater than 2.
Hence, we can conclude that FPI will not converge to the �xed point of 5 , since we need 5 0(q)
to have magnitude less than 1 to con�rm convergence.
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3 Fixed-point iteration

3.4 Solving other equations using FPI

As it is presented, it seems that �xed-point iteration can only be used to solve equations of the
following form:

5 (G) = G

However, FPI can actually be used to solve a wide variety of other equations, provided that it
converges. For instance, suppose you want to �nd a root of a function 5 , i.e. a solution to the
equation

5 (G) = 0 (i)

Notice that this equation is equivalent to the following:

5 (G) + G = G (ii)

by adding G to both sides of the original equation. That is, every solution to equation (i) is a
solution to (ii), and vice versa. If we de�ne a second function called 6 by letting 6(G) = 5 (G) + G ,
then the second equation states that

6(G) = G (iii)

so that the equations (i), (ii) and (iii) all have exactly the same solutions. Notice that equation
(iii) expresses that G is a �xed point of the function 6! This means that every root of 5 is a �xed
point of 6, and vice versa. Since FPI is e�ective for calculating �xed points, we can also use
it for calculating roots of an arbitrary function 5 (G) by instead calculating �xed points of the
transformed function 6(G) = 5 (G) + G .

As a matter of fact, we can essentially solve any equation with FPI (again, ignoring convergence
issues). If we have any two functions 51 and 52 and we want to solve the equation

51(G) = 52(G)

we may rewrite this equation as follows:

51(G) � 52(G) = 0

Hence, if we let 5 (G) = 51(G) � 52(G), any solution to our equation will be a root of the function
5 (G). And we have just seen how to use FPI to calculate roots!
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3 Fixed-point iteration

3.5 Fixing divergent behavior

In the previous section, we ignored matters of convergence, but convergence of FPI is extremely
important. After all, if FPI does not converge to a �xed point q of some function 5 , then FPI
will not help us approximate that �xed point. As we’ve seen, we need |5 0(q) | < 1 for FPI to
reliably converge to the �xed point q . But what if we want to approximate a �xed point where
|5 0(q) | > 1? Is FPI completely useless in this case?

As it turns out, there is actually a creative way of using FPI to approximate a �xed point q of a
function 5 where |5 0(q) | > 1. Consider once more the following equation:

5 (G) = G (i)

Let us choose some �xed constant 2 2 R, and add the quantity 2G to both sides of this equation.
This yields the following:

5 (G) + 2G = (2 + 1)G (ii)

Note that this equation has exactly the same solutions as (i), so if we can approximate the
solutions of this equation, then we can approximate the solutions of our original equation. So
far so good. Now, let’s divide both sides of this equation by (2 + 1), assuming that 2 < �1. We
get the following:

5 (G) + 2G

2 + 1
= G (iii)

Again, the solutions of (iii) are precisely the same as the solutions of (i). In fact, if we de�ne a
second function, call it 62 , to equal the left-hand side of this equation:

62 (G) =
5 (G) + 2G

2 + 1

then we have that (iii) simply states 62 (G) = G . Thus, the �xed points of 5 are exactly the same as
the �xed points of 62 . If we manage to approximate the �xed points of 62 , then we will have also
obtained approximations for the �xed points of 5 .

If we can’t apply �xed-point iteration to 5 successfully, then maybe it will work on 62 . To know
whether FPI is viable for 62 , we need to know what 602 (q) looks like, and whether its magnitude
is between 0 and 1. We have the following derivative from the de�nition of 62 :

602 (G) =
5 0(G) + 2

2 + 1
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3 Fixed-point iteration

meaning that

602 (q) =
5 0(q) + 2

2 + 1
Now, recall that 2 can be any constant we want (other than 2 = �1). Thus, we can simply choose
a value of 2 that makes 602 (q) have a value between �1 and 1, guaranteeing convergence.

Let’s see an example of this in action by considering the �xed point of the following function
that we looked at earlier:

5 (G) = 4G + 2G

We already found that this function has exactly one �xed point q with 5 0(q) > 2, meaning that
FPI would not be viable for approximating this �xed point. Notice that we have

5 0(G) = 4G + 2

so since this �xed point is negative, we can reason that the slope at this �xed point is no greater
than 3 = 40 + 2. This means that if we choose 2 = �3, then the quantity

602 (q) =
5 0(q) + 2

2 + 1
is guaranteed to be between �1 and 0, which means that applying FPI to the function

6�3(G) =
5 (G) � 3G

�2
=
G � 4G

2
would give us a sequence of convergent approximations to this �xed point of the desired function
5 (G). Here’s a plot of these two functions, with 5 (G) in red, 62 (G) in green, and the line ~ = G
in blue:
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3 Fixed-point iteration

As an interesting aside, not only can we use this trick to get convergent approximations for
a �xed point where FPI normally fails, but we can also use it to accelerate the convergence for
�xed points that FPI converges to slowly. For instance, if we have a function 5 (G) with a �xed
point q at which |5 0(q) | = 0.99, FPI will converge to this �xed point for su�ciently close initial
guesses, but it may do so extremely slowly, with the error decreasing by approximately 1% each
iteration. However, by choosing a suitable value of 2 , we can �nd a function 62 with the same
�xed point and a smaller value of |602 (q) |.
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