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Abstract

In this report, we briefly describe the theory of potential flows from
fluid dynamics, and introduce point vortices as a tool for constructing
more complex flows with desired properties. We then derive formulae
that allow us the approximate potential flow past an elliptical cylinder,
and use the limiting behavior of this flow as the ellipse becomes thinner
to approximate potential flow past a plate. We also perform a basic error
analysis of this approximation method, and notice how cusplike behavior
gives rise to very slow convergence at certain points near the plate.

1 Background

In fluid dynamics, potential flow is a special type of fluid flow defined by cer-
tain assumptions placed on a fluid’s behavior. In particular, potential flow is
assumed to be ideal or inviscid, as well as irrotational. Intuitively, inviscid
flow can be understood as fluid flow in which the viscous forces resisting defor-
mation are negligible compared to inertial forces which ”push” a fluid along the
same trajectory that it is currently following. Irrotational flow has zero vortic-
ity or ”local spinning motion” anywhere in its domain. Consequently, potential
flow has the additional property that it doesn’t ever ”flow in circles.” (Stated
more precisely, on a simply connected domain, the circulation of a potential flow
around any closed curve is 0, where circulation is a measure of the extent to
which a flow moves in the ”same direction” as another curve.) [1]

There is a special type of potential flow induced by something known as a
point vortex, which can be thought of as a force that induces fluid to flow in
circles like a ”whirlpool”. The point vortex with strength Γ is defined by the
velocity field

v(x, y) =
Γ

2π

⟨−y, x⟩
x2 + y2

This velocity field induces fluid flow in counterclockwise circles around the
origin (0, 0). This may seem to contradict the irrotational property of potential
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flow - however, it turns out that the above velocity field is undefined at the
origin (x, y) = (0, 0) since v does not have a limit as (x, y) approaches (0, 0).
This means that the domain of definition of this potential flow is not the entire
plan R2, but rather the ”punctured plane” R2\(0, 0), or the plane minus the
point at (0, 0). This is not a simply connected domain. The circulation about
any simple closed curve surrounding the origin is equal to Γ - but if a curve
does not surround the origin, it exists in a simply connected part of the fluid’s
domain, meaning that it has zero circulation.

Figure 1: Circulation around various paths surrounding a simple point vortex.

We can also consider fluid flows induced by two or more point vortices. The
velocity fields of these flows can be calculated by simply adding together the
velocity fields induced by each of the point vortices. For instance, a flow induced
by two point vortices gyrating in the same direction might look like this:
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Figure 2: Circulation around various paths surrounding two point vortices of
the same orientation.

whereas the flow induced by two point vortices gyrating in opposite direc-
tions might look like this:
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Figure 3: Circulation around various paths surrounding two point vortices of
different orientations.

For more examples of potential flows induced by various combinations of
point vortices, see Appendix A (in which this type of point vortex is referred to
as a ”v-slow” vortex).

Using techniques from calculus, we are able to transition from discrete sets
of point vortices, each having some finite vortex strength, to continua consisting
of infinitely many point vortices with infinitesimal strengths distributed across
them. In this way, we can construct flows in which vorticity is generated by some
continuous shape, rather than single isolated points. For instance, consider the
following flow consisting of 10 point vortices of equal strength arranged in a
straight line:

Figure 4: Potential flow around ten point vortices arranged in a straight line.

Because there are so many vortices so tightly packed together, the small
ringlike trajectories surrounding each vortex are hardly visible. If we increase
the number of point vortices to 20, they are so tightly packed together that the
flow seems to be shaped by continous line segment of stagnation, rather than a
collection of many discrete point vortices:
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Figure 5: Potential flow around twenty point vortices arranged in a straight
line.

By strategically choosing the positions and strengths of point vortices, we can
enforce the existence of certain regions of stagnation in the resulting flow. This
is how, for instance, we will later approximate potential flow around a circular
cylinder: by placing a large number of point vortices in a circular arrangement
with particular vortex strengths, we cause a cancellation in the induced velocity
field at points on the circumference of the circle, so that flow never ”pushes” or
”pulls” perpendicular to the circumference, only ”sliding” parallel to it. This
is meant to model how fluid flows past solid objects, so that this configuration
models how an ideal, irrotational fluid would flow past a solid cylindrical object.
(Other models of fluid flow give rise to other desirable behaviors, such as Stokes
flow, in which fluid flow is zero on boundaries - so that, unlike in potential flow,
fluid is not allowed to ”slip” past surfaces either.)

To describe this construction more precisely: the velocity field induced by a
point vortex at the point (x0, y0) is given by

v(x, y) =
Γ

2π

⟨−(y − y0), (x− x0)⟩
(x− x0)2 + (y − y0)2

[2] From this, it follows that if we have a sequence of finitely many point
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vortices with strengths Γ1, ...,Γn situated at the points (x1, y1), ..., (xn, yn) re-
spectively, the overall velocity field is given by

v(x, y) =

n∑
k=1

Γi

2π

⟨−(y − yk), (x− xk)⟩
(x− xk)2 + (y − yk)2

Now, if we situate these vortices along the length of some curve C evenly
spaced along its length L, so that the relative strength of each vortex Γ is a
function of its position Γ(xk, yk) and inversely proportional to the number of
vortices (so that their aggregrate strength does not grow unboundedly large),
we have that

v(x, y) =

n∑
k=1

Γ(xk, yk)

2πn

⟨−(y − yk), (x− xk)⟩
(x− xk)2 + (y − yk)2

This takes the form of the Riemann Sum, and Γ(xk, yk)/n measures the
”point vortex strength density”, which we may also denote as dΓ, at a point
along the curve. As the number of vortices n becomes increasingly large and
grows towards infinity, the above Riemann Sum approaches the integral

v(x0) =
1

2π

∫
C

k× (x0 − x)

||x0 − x||2
dΓ

Sometimes we wish to consider how an object behaves when placed in a
preexisting potential flow or a background flow u, we add this term to the
above expression, so that we have the formula

v(x0) =
1

2π

∫
C

k× (x0 − x)

||x0 − x||2
dΓ + u(x0)

In this report, we consider steady flow past a cylinder in which the back-
ground flow is moving at a constant rate in the vertical direction, so that
u = ⟨0, u∞⟩ everywhere. In the following section, we will ”reverse-engineer”
the above formula to solve for some distribution Γ of point vortex strengths
that results in a potential flow whose velocity component normal to a circular
cylinder equals 0.

In some cases, we might want to consider potential flow past an object
which has corners or cusps and is not smooth like a circle, such as a polygon or
a line segment. However, these types of surfaces do not necessarily have well-
defined normal vectors at all points, since may be impossible to parametrize with
differentiable functions. However, we can consider potential flows path smooth
surfaces which are ”near” in shape to the non-smooth surface in question, and
use them as an approximation of the flow past that surface.

The purpose of this report is to explore a particular simple case of this
technique. Namely, we consider potential flow past sequences of ellipses with one
semiradius shrinking towards 0, so that they become increasingly thin, becoming
closer and closer in shape to a flat line segment. In this way, we estimate
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potential flow past a flat plate by approximating the plate by a sequence of thin
ellipses.

In the following sections, we derive the specific integral equations used to
solve for Γ in the case of potential flow past an ellipse, and solve these equations
approximately in MATLAB. Then we test our code on a few simple examples
and evaluate its performance as the ellipses approach the shape of a plate.

2 Methods

As discussed in the previous section, at any point on the boundary of a smooth
surface, the normal component of the potential flow must equal zero, which
follows from incompressibility. In the constant background flow ⟨0, u∞⟩ past a
smooth curve C with point vortex strength densities given by Γ, the velocity at
a point x0 can be written as

1

2π

∫
C

k× (x0 − x)

||x0 − x||2
dΓ + ⟨0, u∞⟩

We may therefore formulate the zero-normal-velocity condition in integral
form as follows: if x0 is a point on the curve C, and n0 is the normal vector to
C at that point, then

1

2π

∫
C

n0 · k× (x0 − x)

||x0 − x||2
dΓ = n0 · ⟨0,−u∞⟩ ∀x0 ∈ C

Notice that this is a singular integral: because x0 is on C and the variable
of integration x ranges over C, we have that x0−x = 0 and the denominator of
the integrand becomes 0 for some x ∈ C. Despite this singularity, the integral
can still be calculated validly using theCauchy principal value. (The problem
of numerically dealing with singular or near-singular integrals often comes up
when computing fluid flows. In fact, my faculty mentor has devised a novel
method for evaluating near-singular integrals that arose in her computations of
vortex sheet flows past a plate. [3]) We will soon discuss how this problem is
addressed numerically in our code.

In the case where C is an ellipse with semiradii 1 and s, we may parametrize
it as follows:

x = ⟨cos θ, s sin θ⟩

so that the above identity becomes
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1

2π

∫
γ

n0 · k× (x0 − x)

||x0 − x||2
dΓ =

1

2π

∫ 2π

0

n0 · k× (⟨x0, y0⟩ − ⟨cos θ, s sin θ⟩)
||⟨x0, y0⟩ − ⟨cos θ, s sin θ⟩||2

dΓ

=
1

2π

∫ 2π

0

n0 · k× (⟨x0 − cos θ, y0 − s sin θ⟩)
||⟨x0 − cos θ, y0 − s sin θ⟩||2

dΓ

=
1

2π

∫ 2π

0

n0 · (⟨y0 − s sin θ, cos θ − x0⟩)
(x0 − cos θ)2 + (y0 − s sin θ)2

dΓ

= n0 · ⟨0,−u∞⟩

For the ellipse in question, if Γ(θ) is the point vortex strength density as
a function of θ, and the infinitesimal point vortices comprising the ellipse are
distributed uniformly by length, we have that

t = ⟨− sin θ, s cos θ⟩

n0 = ⟨s cos θ0, sin θ0⟩

dΓ =
Γ(θ)dθ

||t||
=

Γ(θ)dθ√
sin2 θ + s2 cos2 θ

Using these facts, we have that

1

2π

∫
γ

n0 · k× (x0 − x)

||x0 − x||2
dΓ =

∫ 2π

0

n0 · (⟨y0 − s sin θ, cos θ − x0⟩)
(x0 − cos θ)2 + (y0 − s sin θ)2

dΓ

=
1

2π

∫ 2π

0

s cos θ0(y0 − s sin θ) + sin θ0(cos θ − x0)

(x0 − cos θ)2 + (y0 − s sin θ)2
dΓ

=
1

2π

∫ 2π

0

s cos θ0(y0 − s sin θ) + sin θ0(cos θ − x0)

(x0 − cos θ)2 + (y0 − s sin θ)2
Γ(θ)dθ√

sin2 θ + s2 cos2 θ

= −u∞ sin θ0

If we can solve for the vortex strength density function Γ, then we can use
it to calculate the velocity field at any point using the above integrals. Thus,
we will attempt to numerically solve the following system of integral equations
for Γ:

1

2π

∫ 2π

0

s cos θ0(y0 − s sin θ) + sin θ0(cos θ − x0)

(x0 − cos θ)2 + (y0 − s sin θ)2
Γ(θ)dθ√

sin2 θ + s2 cos2 θ
= −u∞ sin θ0

1

2π

∫ 2π

0

Γ(θ)dθ√
sin2 θ + s2 cos2 θ

= γ
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where γ is a free parameter measuring the circulation of the flow around the
boundary of the ellipse.

To accomplish this in MATLAB, we discretize both the interval of integration
and the continuum of point vortices, using points equally spaced in θ around the
boundary of the ellipse. In order to deal with the singular integral in the first of
these equations, we use different sets of θ-values for the variable of integration
and the point vortices. In particular, the variable of integration ranges over
θ-values starting at θ = 0 and increasing in increments of 2π/n, and the point
vortices are situated at points starting at θ = π/n and increasing in increments
of 2π/n. In MATLAB, their θ-values are calculated as follows:

% Calculation of angles

% "thetas" are the gridpoints of integration, starting at 0

% "theta0s" are the point vortex locations, shifted by dtheta/2

dtheta = 2*pi/n;

theta0s = linspace(0, 2*pi, n+1);

theta0s(end) = [];

thetas = theta0s;

theta0s = theta0s + dtheta/2;

For convenience, we also calculate the x- and y-values of the gridpoints of
integration and the discrete point vortices, as well as the values of ||t|| involved
in the integral:

% Calculation of coordinates

% "xs" and "ys" are gridpoints for integration

% "speeds" are the arclength per unit angle at each point

% "nxs" and "nys" are unit normal vecs at each point

% Analogous values for the theta0s are calculated

xs = cos(thetas);

ys = semirad*sin(thetas);

speeds = sqrt(semirad^2*cos(thetas).^2+sin(thetas).^2);

nxs = semirad*cos(thetas)./speeds;

nys = sin(thetas)./speeds;

speed0s = sqrt(semirad^2*cos(theta0s).^2+sin(theta0s).^2);

nx0s = semirad*cos(theta0s)./speed0s;

ny0s = sin(theta0s)./speed0s;

x0s = cos(theta0s);

y0s = semirad*sin(theta0s);

In MATLAB, we represent Γ(θ) as a vector Γ containing the point vortex
strengths at each of the discretized vortices. The first integral equation is rep-
resented in the form

AΓ = −u

where

9



Aij =
1

2πn

s cos θ0i(y0i − s sin θj) + sin θ0i(cos θj − x0i)

(x0i − cos θj)2 + (y0i − s sin θj)2
1√

sin2 θj + s2 cos2 θj

ui = u∞ sin θ0i

in which θj denotes the jth gridpoint of integration, and θ0i, x0i, and y0i
represent the position of the ith point vortex. We add an extra row to both the
matrix A and the vector u to include the second integral equation containing
the parameter γ for circulation around the ellipse. In MATLAB, all of this is
implemented as follows:

% Set up matrix system for integral equation

int_matrix = [];

for j=1:n

theta0 = theta0s(j);

x0 = x0s(j);

y0 = y0s(j);

denom = ((xs-x0).^2+(ys-y0).^2);

numer = nx0s(j) .* (ys - y0) + ny0s(j) .* (-xs + x0);

int_weight = (1/(2*pi*n))*numer./(denom.*speeds);

int_matrix = [int_matrix; int_weight];

end

int_matrix = [int_matrix; ones(1, n)/n];

conds = [conds, cond(int_matrix)];

normal_vel = -u_infty*ny0s;

% Add an extra equation for the circulation around the ellipse

normal_vel = [normal_vel, circ];

Finally, we solve for Γ:

% Solve the system

Gamma = int_matrix\normal_vel’;

In the following section, we will analyze the performance of this method as
follows:

• First, we calculate Γ and the potential flow for a few simple cases, such
as flow around a cylinder.

• Next, we analyze how these approximations of Γ and the velocity field
behave as n increases.

• Finally, we observe the behavior of Γ and the convergence rate as the
smaller semiradius s → 0 and the ellipse approaches the shape of a thin
plate.
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3 Numerical results

We start by testing the above method for a few simple, well-known examples,
starting with zero-circulation potential flow around a circular cylinder. Gener-
ating and plotting Γ using the above algorithm with n = 200 yields the graph
shown below:

Figure 6: Point vortex strength distribution for potential flow around a circular
cylinder.

Note that this matches with the analytical value of Γ(θ) = 4π cos θ, cor-
roborating the validity of our methods. When we generate a velocity field and
streamlines from the calculated Γ, we obtain the following plot:
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Figure 7: Streamlines for potential flow around a circular cylinder.

Running the same computations with a different circulation value of γ = 3
results in the following streamlines instead:
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Figure 8: Streamlines for potential flow around a circular cylinder with nonzero
circulation.

As we can see, the flow is now slightly ”bent” so that its counterclockwise
circulation about the circular cylinder is greater than its clockwise circulation,
as we would expect. We can also obtain the streamlines of potential flow past
an elliptical cylinder, say, with a semiradius of s = 0.33:

Figure 9: Streamlines for potential flow around an elliptical cylinder with semi-
radius 0.33.

and the plotted sequence of point vortex strengths Γ for the above flow
appears as follows:
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Figure 10: Point vortex strength distribution for potential flow around an ellip-
tical cylinder with semiradius 0.33.

Note that the greatest oscillations in the point vortex strengths occur around
θ = 0 and θ = π, at the points on the far left and right sides of the ellipse. Later,
when we consider the limit as s → 0 in which the ellipse approximates a flat
plate, we will see how this phenomenon is amplified as the semiradius of the
ellipse decreases.

Knowing the analytic solution Γ(θ) = 4π cos θ for potential flow around a
circular cylinder with background flow uinfty = 1 and circulation γ = 0, we
can also evaluate the error in our approximation of the velocity field. We will
approximate the error by calculating

|vn(1, 1)− vn−1(1, 1)|

where vk(1, 1) represents the approximation of the velocity at the point (1, 1)
with k gridpoints used for discretization. (The point (1, 1) is just an arbitrarily
chosen ”test point”.) The below figure shows how this error varies with n:
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Figure 11: Error decay at the point (1, 1) as the number of gridpoints increases
in estimates of potential flow around a circular cylinder.

As we can see from this figure, the error approaches the limits of machine
precision very quickly, and the error has already ”bottomed out” after only
about n = 100 grid points.

Now we are ready to test the performance of our approximation on sequences
of ellipses with shrinking vertical semiradii. When we shrink the semiradii to
very small values, we obtain the following reasonable-looking streamline plot for
flow past a plate:
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Figure 12: Streamlines for potential flow past a flat plate, approximated by a
very thin ellipse.

However, the error plots tell a different story. Below is a plot showing how
the velocity approximation at the test point (1, 1) varies with n for the 5 different
semiradius values of s = 100, 10−1, ..., 10−4:
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Figure 13: Error decay at the point (1, 1) as the number of gridpoints increases
and semiradius decreases in estimates of potential flow around an elliptical cylin-
der.

For semiradii less than or equal to s = 0.01, the error decreases much more
slowly compared to the cases of s = 1 and s = 0.1, and is still at least as large
as 10−5 when n = 200 gridpoints are used - which is sufficient to bring the error
close to machine epsilon for both s = 1 and s = 0.1! Further, calculating flow
for values of n much larger than n = 200 quickly becomes infeasible because
this involves solving a matrix system of size (n+ 1)× (n+ 1), meaning that its
time complexity could grow on the order of up to O(n3). This means that it
would be very difficult to obtain very accurate estimates of the potential flow
for values of the semiradius less than or equal to s = 0.01.

Recall that all of the above error computations were based on the arbitrarily
chosen test point (1, 1) at which we sample the variation in the velocity. How-
ever, this is not even a point at which the velocity field is particularly ”badly
behaved”. The most troublesome behavior occurs at the leftmost and rightmost
edges of the ellipse which become the endpoints of the approximated plate. Due
to this cusp-like geometry, the velocity of the potential flow in the neighborhood
of these points is very large, and hence more susceptible to error. If we change
our test point to (1, 0.1) instead, which is much closer to the endpoint (1, 0) of
the plate, we can see that the error decays much more slowly and erratically:

Figure 14: Error decay at the point (1, 0.1) as the number of gridpoints increases
in estimates of potential flow around a circular cylinder.

Other ”trouble points” occur close to the origin, such as at (0.1, 0.1):
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Figure 15: Error decay at the point (0.1, 0.1) as the number of gridpoints in-
creases in estimates of potential flow around a circular cylinder.

4 Conclusion

In the above sections, we have seen how point vortices can be used to discretize
the surfaces of objects in order to approximate potential flow around them. We
have applied the theoretical equations to implement a function in MATLAB
approximating potential flow around the ellipse, and used the limiting behavior
of these approximations as s → 0 to estimate fluid flow past a flat plate. As
we have seen, it becomes very difficult to obtain accurate approximations as
the extremal points of the ellipse display cusplike behavior. This could pose
challenges when attempting to calculate potential flow past any object with
sharp corners, such as a collection of flat walls or polygons.

The above exploration leaves several questions unanswered, which could be
explored further in the future. For instance:

• How can the above methods be refined and optimized to improve the
convergence rate of the approximations to the potential flow?

• Can other techniques (perhaps from complex analysis) be used to obtain
better approximations of potential flow past objects with sharp corners,
or even closed-form analytical expressions for some special cases?

• Why does the error decrease much faster at some points than others rel-
ative to the position of the plate? Are approximations necessarily worse
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near cusps and stagnation points?

• Do similar problems arise when computing fluid flow according to other
models, such as Stokes flow?

For anyone curious who might want to continue experimenting themselves,
the MATLAB functions used to compute Γ and plot the streamlines of the
induced potential flow are included in the appendix.
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A Appendix A: Various point vortices

The following pages consist of a short report that explores the behavior of various
different finite collections of point vortices and their induced velocity fields.
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Single vortex streamfunction

function psi = vortex_psi(cx, cy, speed_int, xg, yg)
    radii = sqrt((xg-cx).^2+(yg-cy).^2);
    psi = -speed_int(radii);
end

In the above code, speed_int represents an antiderivative of the speed of the vortex as a function of
the distance from its center. We will consider two types of vortices: those in which the speed is constant
everywhere, which we will call v-constant vortices, and those in which the speed is inversely proportional
to the distance from the center, which we will call v-slow vortices. To find the streamfunction for a flow
containing two or more such vortices, we just need to sum the streamfunctions for each of the individual
vertices considered independently. For flows with multiples vortices, we can use the above simple function
to calculate the streamfunction for each vortex, and then add them together.

Two-vortex flows
What do streamlines look like when we have two different vortices? There are multiple possibilities to
consider:

• Both vortices could be v-constant, or both could be v-slow, or there could be one of each type

• The vortices could both be rotating clockwise or counterclockwise, or be rotating with opposite orien-
tations

• The vortices could have varying magnitudes of rotation

• The distance between the centers of the vortices can vary

We will consider several different combinations of these possibilities.

Example 1. Two v-constant vortices with the same orientation and speed:

x = linspace(-10,10);
y = linspace(-10,10);
[xg,yg] = meshgrid(x,y);

Speed = inline('-r');

1
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psi1 = vortex_psi(-4,0,Speed,xg,yg);
psi2 = vortex_psi(4,0,Speed,xg,yg);
psi = psi1+psi2;

contour(xg,yg,psi,20);

Note that, on the line segment joining the centers of the vortices, velocity equals zero, because the contri-
butions of the rotations from the two vortices cancel each other. The streamlines appear to be ellipses.

Example 2. Two v-constant vortices with the opposite orientation and same speed:

Speed1 = inline('-r'); % counterclockwise
Speed2 = inline('r');  % clockwise
psi1 = vortex_psi(-4,0,Speed1,xg,yg);
psi2 = vortex_psi(4,0,Speed2,xg,yg);
psi = psi1+psi2;

contour(xg,yg,psi,20);

2
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Remarkably, this flow has no closed streamlines, even though it is a combination of two vortices! In this
case, the streamlines appear to be hyperbolas.

Example 3. Two v-constant vortices with the same orientation, in which one is twice as strong as the other:

Speed1 = inline('-r');   % weaker vortex
Speed2 = inline('-2*r'); % stronger vortex
psi1 = vortex_psi(-4,0,Speed1,xg,yg);
psi2 = vortex_psi(4,0,Speed2,xg,yg);
psi = psi1+psi2;

contour(xg,yg,psi,20);

3
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This time, the streamlines are closed and roughly elliptical in shape near the center of the stronger vor-
tex, but the larger streamlines are deformed slightly by the weaker vortex, making them egg-shaped. No
closed streamlines at all surround the weak vortex, but it does seem to cause a sharp/pointy "cusp" in the
streamlines that pass near its center.

Example 4. Two v-constant vortices with different orientations, in which one is twice as strong as the
other:

Speed1 = inline('-2*r'); % stronger vortex, counterclockwise
Speed2 = inline('r');    % weaker vortex, clockwise
psi1 = vortex_psi(-4,0,Speed1,xg,yg);
psi2 = vortex_psi(4,0,Speed2,xg,yg);
psi = psi1+psi2;

contour(xg,yg,psi,20);

4
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Yet again, only the stronger vortex has closed streamlines surrounding it, and the weak vortex only man-
ages to deform the larger streamlines that come near it. Now let's consider examples in which both vortices
are v-slow instead of v-constant.

Example 5. Two v-slow vortices with the same orientation and strength:

Speed = inline('-log(r)/(4*pi)');
psi1 = vortex_psi(-4,0,Speed,xg,yg);
psi2 = vortex_psi(4,0,Speed,xg,yg);
psi = psi1+psi2;

contour(xg,yg,psi,20);

5
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This is similar to the case with two v-constant vortices in that the larger streamlines look somewhat like
ellipses, but in this case, each vortex has "its own" closed paths surrounding it. This is because the velocity
contribution of each vortex shrinks with distance in the v-slow case, meaning that each vortex dominates
trajectories that start close to it. Note that there is a stationary point at the origin.

Example 6. Two v-slow vortices with opposite orientations and the same strength:

Speed1 = inline('-log(r)/(4*pi)');  % counterclockwise
Speed2 = inline('log(r)/(4*pi)');   % clockwise
psi1 = vortex_psi(-4,0,Speed1,xg,yg);
psi2 = vortex_psi(4,0,Speed2,xg,yg);
psi = psi1+psi2;

contour(xg,yg,psi,20);
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In this case, we have the similar phenomenon of each vortex center being surrounded by small closed
streamlines, but there are no larger streamlines that enclose both vortex centers. Instead, there is a straight-
line trajectory lying entirely on the y-axis that separates the "territory" of one vortex from the other.

Example 7. Two v-slow vortices with the same orientation, in which one is twice as strong as the other:

Speed1 = inline('-log(r)/(4*pi)'); % weaker vortex
Speed2 = inline('-log(r)/(2*pi)'); % stronger vortex
psi1 = vortex_psi(-4,0,Speed1,xg,yg);
psi2 = vortex_psi(4,0,Speed2,xg,yg);
psi = psi1+psi2;

contour(xg,yg,psi,20);
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Here we have something similar to Example 5, but the stronger vortex has more/larger closed streamlines
surrounding its center. This makes sense, since it "dominates" a larger area by virtue of its increased
strength.

Example 8. Two v-slow vortices with opposite orientations, in which one is twice as strong as the other:

Speed1 = inline('-log(r)/(2*pi)'); % stronger vortex, counterclockwise
Speed2 = inline('log(r)/(4*pi)');  % weaker vortex, clockwise
psi1 = vortex_psi(-4,0,Speed1,xg,yg);
psi2 = vortex_psi(4,0,Speed2,xg,yg);
psi = psi1+psi2;

contour(xg,yg,psi,20);
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This time we have an analog of Example 6, again deformed in favor of the strong vortex. There are no
trajectories enclosing the centers of both vortices, and there again appears to be a (non-closed) trajectory
separating their "territories", but it is not a straight line anymore.

Now let's consider some two-vortex flows with one v-constant and one v-slow vortex.

Example 9. One v-constant and one v-slow vortex with the same orientation.

Speed1 = inline('-r');             % v-constant vortex
Speed2 = inline('-log(r)/(4*pi)'); % v-slow vortex
psi1 = vortex_psi(-4,0,Speed1,xg,yg);
psi2 = vortex_psi(4,0,Speed2,xg,yg);
psi = psi1+psi2;

contour(xg,yg,psi,20);
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As we would expect from two vortices that are "working together" (i.e. turning in the same direction),
the larger streamlines enclose both centers and look almost elliptical (even vaguely circular, for the larg-
er streamlines). Although it isn't visible from this plot, the v-slow vortex has tiny closed streamlines sur-
rounding it.

Example 10. One v-constant and one v-slow vortex, with opposite orientations.

Speed1 = inline('r');              % v-constant vortex, clockwise
Speed2 = inline('-log(r)/(4*pi)'); % v-slow vortex, counterclockwise
psi1 = vortex_psi(-4,0,Speed1,xg,yg);
psi2 = vortex_psi(4,0,Speed2,xg,yg);
psi = psi1+psi2;

contour(xg,yg,psi,20);
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Again, the v-slow vortex only has tiny closed streamlines surrounding it (invisible in this plot), and the v-
constant dominates the flow everywhere else, being only slightly deformed by the v-slow vortex.

Three or more v-constant vortices
We won't look at these cases as thoroughly, because there are many more of them to consider, but here is
some code that (non-exhaustively) covers some of the possible combinations of three v-constant vortices:

Speed1 = inline('-r');   % counterclockwise weak flow
Speed2 = inline('r');    % clockwise weak flow
Speed3 = inline('-2*r'); % counterclockwise strong flow
Speed4 = inline('2*r');  % clockwise strong flow

x1 = 4; y1 = 0;
x2 = 4*cos(2*pi/3); y2 = 4*sin(2*pi/3);
x3 = 4*cos(4*pi/3); y3 = 4*sin(4*pi/3);

Example 11. Three v-constant vortices, same strength, same orientation.

psi1 = vortex_psi(x1,y1,Speed1,xg,yg);
psi2 = vortex_psi(x2,y2,Speed1,xg,yg);
psi3 = vortex_psi(x3,y3,Speed1,xg,yg);
psi = psi1+psi2+psi3;

contour(xg,yg,psi,20)
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Example 12. Three v-constant vortices, same strength, two with the same orientation, one with the opposite
orientation.

psi1 = vortex_psi(x1,y1,Speed1,xg,yg);
psi2 = vortex_psi(x2,y2,Speed1,xg,yg);
psi3 = vortex_psi(x3,y3,Speed2,xg,yg);
psi = psi1+psi2+psi3;

contour(xg,yg,psi,20)
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Example 13. Three v-constant vortices, same orientation, one stronger than the other two.

psi1 = vortex_psi(x1,y1,Speed1,xg,yg);
psi2 = vortex_psi(x2,y2,Speed1,xg,yg);
psi3 = vortex_psi(x3,y3,Speed3,xg,yg);
psi = psi1+psi2+psi3;

contour(xg,yg,psi,20)
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Example 14. Three v-constant vortices, same orientation, one weaker than the other two.

psi1 = vortex_psi(x1,y1,Speed3,xg,yg);
psi2 = vortex_psi(x2,y2,Speed3,xg,yg);
psi3 = vortex_psi(x3,y3,Speed1,xg,yg);
psi = psi1+psi2+psi3;

contour(xg,yg,psi,20)
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Example 15. Three v-constant vortices, one with the opposite orientation and stronger than the other two.

psi1 = vortex_psi(x1,y1,Speed1,xg,yg);
psi2 = vortex_psi(x2,y2,Speed1,xg,yg);
psi3 = vortex_psi(x3,y3,Speed4,xg,yg);
psi = psi1+psi2+psi3;

contour(xg,yg,psi,20)
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Example 16. Three v-constant vortices, one with the opposite orientation than the other two, and a different
one stronger than the other two.

psi1 = vortex_psi(x1,y1,Speed1,xg,yg);
psi2 = vortex_psi(x2,y2,Speed2,xg,yg);
psi3 = vortex_psi(x3,y3,Speed3,xg,yg);
psi = psi1+psi2+psi3;

contour(xg,yg,psi,20)
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Example 17. 16 randomly placed v-constant vortices, all with the same orientation.

psi = 0;
for i=1:16
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed1,xg,yg);
end

contour(xg,yg,psi,20)
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Example 18. 16 randomly placed v-constant vortices, half of which have the opposite orientation of the
other half.

psi = 0;
for i=1:8
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed1,xg,yg);
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed2,xg,yg);
end

contour(xg,yg,psi,20)
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Example 19. 16 randomly placed v-constant vortices, half of which are stronger and half of which are
weaker.

psi = 0;
for i=1:8
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed1,xg,yg);
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed3,xg,yg);
end

contour(xg,yg,psi,20)
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Example 20. 16 randomly placed v-constant vortices, half of which are stronger than the others and have
the opposite orientation.

psi = 0;
for i=1:8
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed1,xg,yg);
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed4,xg,yg);
end

contour(xg,yg,psi,20)
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Example 21. 16 randomly placed v-constant vortices, with one-fourth being counterclockwise and weak,
one-fourth being counterclockwise and strong, one-fourth being clockwise and weak, and one-fourth being
clockwise and strong.

psi = 0;
for i=1:4
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed1,xg,yg);
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed2,xg,yg);
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed3,xg,yg);
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed4,xg,yg);
end

contour(xg,yg,psi,20)

Three or more v-slow vortices
Speed1 = inline('-log(r)/(4*pi)'); % counterclockwise weak flow
Speed2 = inline('log(r)/(4*pi)');  % clockwise weak flow
Speed3 = inline('-log(r)/(2*pi)'); % counterclockwise strong flow
Speed4 = inline('log(r)/(2*pi)');  % clockwise strong flow
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Example 22. Three v-slow vortices, same strength, same orientation.

psi1 = vortex_psi(x1,y1,Speed1,xg,yg);
psi2 = vortex_psi(x2,y2,Speed1,xg,yg);
psi3 = vortex_psi(x3,y3,Speed1,xg,yg);
psi = psi1+psi2+psi3;

contour(xg,yg,psi,20)
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Example 23. Three v-slow vortices, same strength, two with the same orientation, one with the opposite
orientation.

psi1 = vortex_psi(x1,y1,Speed1,xg,yg);
psi2 = vortex_psi(x2,y2,Speed1,xg,yg);
psi3 = vortex_psi(x3,y3,Speed2,xg,yg);
psi = psi1+psi2+psi3;

contour(xg,yg,psi,20)
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Example 24. Three v-slow vortices, same orientation, one stronger than the other two.

psi1 = vortex_psi(x1,y1,Speed1,xg,yg);
psi2 = vortex_psi(x2,y2,Speed1,xg,yg);
psi3 = vortex_psi(x3,y3,Speed3,xg,yg);
psi = psi1+psi2+psi3;

contour(xg,yg,psi,20)
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Example 25. Three v-slow vortices, same orientation, one weaker than the other two.

psi1 = vortex_psi(x1,y1,Speed3,xg,yg);
psi2 = vortex_psi(x2,y2,Speed3,xg,yg);
psi3 = vortex_psi(x3,y3,Speed1,xg,yg);
psi = psi1+psi2+psi3;

contour(xg,yg,psi,20)
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Example 26. Three v-slow vortices, one with the opposite orientation and stronger than the other two.

psi1 = vortex_psi(x1,y1,Speed1,xg,yg);
psi2 = vortex_psi(x2,y2,Speed1,xg,yg);
psi3 = vortex_psi(x3,y3,Speed4,xg,yg);
psi = psi1+psi2+psi3;

contour(xg,yg,psi,20)
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Example 27. Three v-slow vortices, one with the opposite orientation than the other two, and a different
one stronger than the other two.

psi1 = vortex_psi(x1,y1,Speed1,xg,yg);
psi2 = vortex_psi(x2,y2,Speed2,xg,yg);
psi3 = vortex_psi(x3,y3,Speed3,xg,yg);
psi = psi1+psi2+psi3;

contour(xg,yg,psi,20)
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Example 28. 16 randomly placed v-slow vortices, all with the same orientation.

psi = 0;
for i=1:16
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed1,xg,yg);
end

contour(xg,yg,psi,20)
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Example 29. 16 randomly placed v-slow vortices, half of which have the opposite orientation of the other
half.

psi = 0;
for i=1:8
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed1,xg,yg);
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed2,xg,yg);
end

contour(xg,yg,psi,20)
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Example 30. 16 randomly placed v-slow vortices, half of which are stronger and half of which are weaker.

psi = 0;
for i=1:8
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed1,xg,yg);
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed3,xg,yg);
end

contour(xg,yg,psi,20)
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Example 31. 16 randomly placed v-slow vortices, half of which are stronger than the others and have the
opposite orientation.

psi = 0;
for i=1:8
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed1,xg,yg);
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed4,xg,yg);
end

contour(xg,yg,psi,20)
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Example 32. 16 randomly placed v-slow vortices, with one-fourth being counterclockwise and weak, one-
fourth being counterclockwise and strong, one-fourth being clockwise and weak, and one-fourth being
clockwise and strong.

psi = 0;
for i=1:4
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed1,xg,yg);
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed2,xg,yg);
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed3,xg,yg);
    psi = psi + vortex_psi(20*(rand-0.5),20*(rand-0.5),Speed4,xg,yg);
end

contour(xg,yg,psi,20)
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B Appendix B: calc gamma.m

function [Gamma, int_matrix] = calc_gamma(u_infty, semirad, circ, n)

conds = [];

% Calculation of angles

% "thetas" are the gridpoints of integration, starting at 0

% "theta0s" are the point vortex locations, shifted by dtheta/2

dtheta = 2*pi/n;

theta0s = linspace(0, 2*pi, n+1);

theta0s(end) = [];

thetas = theta0s;

theta0s = theta0s + dtheta/2;

% Calculation of coordinates

% "xs" and "ys" are gridpoints for integration

% "speeds" are the arclength per unit angle at each point

% "nxs" and "nys" are unit normal vecs at each point

% Analogous values for the theta0s are calculated

xs = cos(thetas);

ys = semirad*sin(thetas);

speeds = sqrt(semirad^2*cos(thetas).^2+sin(thetas).^2);

nxs = semirad*cos(thetas)./speeds;

nys = sin(thetas)./speeds;

speed0s = sqrt(semirad^2*cos(theta0s).^2+sin(theta0s).^2);

nx0s = semirad*cos(theta0s)./speed0s;

ny0s = sin(theta0s)./speed0s;

x0s = cos(theta0s);

y0s = semirad*sin(theta0s);

% Set up matrix system for integral equation

int_matrix = [];

for j=1:n

theta0 = theta0s(j);

x0 = x0s(j);

y0 = y0s(j);

denom = ((xs-x0).^2+(ys-y0).^2);

numer = nx0s(j) .* (ys - y0) + ny0s(j) .* (-xs + x0);

int_weight = (1/(2*pi*n))*numer./(denom.*speeds);

int_matrix = [int_matrix; int_weight];

end

int_matrix = [int_matrix; ones(1, n)/n];

conds = [conds, cond(int_matrix)];

normal_vel = -u_infty*ny0s;
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% Add an extra equation for the circulation around the ellipse

normal_vel = [normal_vel, circ];

% Solve the system

Gamma = int_matrix\normal_vel’;

% Checking that the normal velocity is actually zero

for i=1:length(x0s)

[u, v] = ellipse_velo(semirad, Gamma, x0s(i), y0s(i));

vel = [u, v] + [0, u_infty];

vel * [nx0s(i), ny0s(i)]’;

end

end
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C Appendix C: gamma grid.m

function x = gamma_grid(semirad, Gamma, u_infty, m)

tol = 1e-10

xs = linspace(-2, 2, m);

ys = linspace(-2, 2, m);

Xp = [];

Yp = [];

Up = [];

Vp = [];

for i=1:m

for j=1:m

x = xs(i);

y = ys(j);

[u, v] = ellipse_velo(semirad, Gamma, x, y);

if abs(u) < tol || x^2 + (y/semirad)^2 < 1

u = 0;

end

if abs(v+u_infty) < tol || x^2 + (y/semirad)^2 < 1

v = -u_infty;

end

if (x^2+y^2/semirad^2 > -1)

Up = [Up,u];

Vp = [Vp,v+u_infty];

Xp = [Xp,x];

Yp = [Yp,y];

end

end

end

figure

clf

quiver(Xp, Yp, Up, Vp)

[Xgr, Ygr] = meshgrid(xs, ys);

Ugr = reshape(Up, m, m);

Vgr = reshape(Vp, m, m);

streamslice(Xgr, Ygr, Ugr, Vgr)

title("Velocity field")

axis equal

end
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