Homotopy Type Theory Seminar Notes (Session 2)

Franklin
July 21, 2022

1 Product types

Last time, we learned about inductive types, which are defined in terms of their constructors, or all
possible ways of producing elements of the type, and their recursion principles, which provide a way of
producing functions out of the type. (Later on, we will also see something called an induction principle
for each inductive type.) During this session, we learned about two ways of ”combining” preexisting
types A and B to produce new types A x B and A + B.

Given types A and B, we may construct a product type denoted A x B. This is an inductive
type with a single constructor called pair, which has the following type signature:

pair : A-B— AXxB

That is, given an element a : A as an argument, and then given an element b : B as an argument,
pair produces an element of A x B, which can be thought of as an ordered pair (a,b). If we continue to
think of types as leading a "double life” as both collections and propositions, if A and B are interpreted
as propositions, then A x B can be interpreted as the assertion ”A and B”, for to construct an element
of A x B, both an element of A and an element of B must be supplied as inputs. The product type
A x B also has its own recursor recsx g, which has the following type signature:

recaxp : H(A—)B—>C’)—>(A><B—>C’)
c:u

If you want to create a function from the product type A x B into some other type C, then you
must first supply the type C' : U as an argument to the recursor, and then supply a function of two
arguments f: A — B — C, which tells us how to "transform” an element a : A and an element b : B
into an element ¢ : C. The recursor rec 44 p transforms this two-argument function into a function
g : Ax B — C which acts on pairs (a,b) as opposed to a function that takes arguments one at a time.
We can also think of recaxp(C) as a function which converts uncurried functions A — B — C' into
curried functions A x B — C.

Let’s look at a few functions defined using this recursor. For one, we can define two projection

functions with the type signatures
prl : AxB—= A

pr2 : AxB—B

which map a pair (a,b) to its first or its second element, respectively. To define these functions, we
must first consider how they act on pairs in an uncurried way:

(a,b) = a

(a,b) — b

If these functions were to take the arguments a, b one at a time, rather than ”"packaged together” in a
pair, they would look something like this:

a— (b a)



a+— (b—b)

Or, to describe these actions using lambda functions, we could write
(Aa. Ab. a)

(Aa. Ab. b)

These curried versions of the projection functions are functions that we already know how to define
using lambda expressions. Hence, to define pr1 and pr2, we can use recaxp to "uncurry” these
lambda expressions and obtain the desired projectors:

prl =recaxn(4, (Aa. Ab. a))

pr2 = recax (B, (Aa. \b. b))

As with many other types, there is a kind of geometric/topological way of thinking of the product
type A x B as well: we can think of it as a kind of space whose "axes” are given by A and B, so that
every point is determined uniquely by its projection onto A and its projection onto B, like this:

A+B

B
pair(a, L). >
‘rﬂ b
Pri

R G

A

Let’s look at another example. Since we can interpret A x B as a proposition stating "both A
and B”, we can prove analogues of classical tautologies involving logical conjunction in type theory.
For instance, we can prove that "and” is commutative by showing that for any types A, B, we have a
function A x B — B x A. That is, we can construct an element

andComm : H AxB-—-BxA
A,B:U

as a proof that logical conjunction is commutative. As a function, andComm should transform a pair
consisting of an element of A and an element of B into a pair consisting of an element of B and
an element of A. The only way of accomplishing this that comes to mind is to map (a,b) — (b,a).
Remember, though, that this is an uncurried function on pairs, and to define this using recaxp, we
must supply a curried version of the same function:

a— (b pair(b,a))

or
Aa. \b. pair(b, a)

so that we may write our proof as follows:

andComm = recsx (B X A, (Aa. \b. pair(b,a)))



Alternatively, we could define andComm by using the preexisting projection functions pr1 and pr2
to extract the first and second elements of a pair, rather than using the recursor. We can do this as
follows:

andComm = Ap. pair(pr2(p), pri(p))

We can also use product types to define recursive sequences on N that aren’t so straightforward to
define using recy because each term is defined a function of more than just its immediate predecessor.
An example that comes to mind is the Fibonacci sequence, defined recursively by the initial values
Fy =0, F; =1 and the recurrence

F7L+1 =F,+ F

Because recy tells us how to define recursive functions in terms of the index and the previous term,
so that f(n+ 1) = g(n, f(n)) for some function g. It is not, however, apparent how to express Fj,11
as a (simple) function of n and F,,. But if, instead of considering individual Fibonacci numbers, we
consider pairs of consecutive Fibonacci numbers, we may use the fact that

(Fn—i-lyFn) = (Fn +Fn—17Fn)
to express each pair as a function of the previous pair:

(Fn—&-la Fn) = g(m (FnyFn—l))

where
g9((a,b)) = (a+b,a)
Or, defined as a lambda expression,

g = Ap. pair(pri(p) + pr2(p), pri(p))

Thus, we can define a function fiboPair : N — N x N that calculates pairs of Fibonacci numbers
using recy as follows:

fiboPair = recy (N x N, pair(1,0), ()\p. pair(pri(p) + pr2(p),pr1(p))))

Hence, to extract the nth Fibonacci number from this, we may simply take the second projection of
fiboPair(n). Thus, we may define £ibo : N — N as follows:

fibo = pr2 o fiboPair

2 Coproduct and dependent sum type

” b2

We have seen what the type-theoretic analogues of the logical operators "implies”, "not”, and ”"and”
are, with the most significant omission so far being “or”. Given two types A and B their coproduct
type or sum type is denoted A 4+ B, and is also defined as an inductive type. The type A 4+ B has
two constructors:

inl : A> A+ B

inr : B—A+B

In other words, given an element a : A, we can construct an element inl(a) : A + B; alternatively,
given an element b : B, we can construct an element inr(b) : A+ B. If we have a proof of A, or if
we have a proof of B, then we can construct a proof of A+ B by applying inl or inr respectively,
hence the logical interpretation of A+ B as A or B”. Of course, A+ B has a recursor as well, denoted
rec4+p, which has the following type signature:

recAyp : H(A—>C) —-(B—=>C)—=(A+B)=C
c:u
Given a function f : A — C and a function g : B — C, the recursor produces a function from
A+ B — C which is defined "piecewise”, so that it sends inl(a) — f(a) and inr(b) — g(b) for all
a: Aandb: B. Pictorially, we can think of A+ B as a type consisting of a copy of A and a copy of
B, ”smushed together”:
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In fact, if you expand this diagram to include a third type C, and imagine how two functions
f:A— Cand g: B — C are combined using the recursor to create a function A + B — C, and if
you’ve been exposed to a little category theory, you might recognize this as coproduct diagram:

) recp.q(f, 4)

ey

Categorically speaking, the recursor rec 44 g is defined in such a way that rec a4 g(f, g) makes this
diagram commute for any f : A — C and g : B — C. (Actually, coproducts have a bit of a stronger
definition in category theory, and they are a special case of a more general construction called a colimit.)

3

Once again, we can use the inductive definition and constructors of A + B to prove analogues of
tautologies from classical logic, such as "A and B implies A or B”:

AxB— A+ B

A function andImpliesOr : A x B — A+ B, or a proof of this tautology, would take as input a pair
(a,b) and return either an element of A included in A + B via inl, or an element of B included in
A+ B via inr. Of course, if we are given (a,b), we can use inl(a) : A + B as the desired element.
Thus, it suffices to define

andImpliesOr = inl opril

Alternatively, given the pair (a,b), we might choose to use inr(b) : A+ B rather than inl(a) : A+ B,
and decide to define
andImpliesOr’ = inr o pr2

Notice that although these two functions are proofs of the same propositions, they are not the same
function. They have very different behavior: the former function uses only the first element of any pair
given as input, and the latter only uses the second element of any input pair. This is an example of
proof relevance, i.e. the idea that two proofs of the same proposition can have different "behavior”
- in contrast to the concept of proof irrelevance, where any two proofs of the same proposition
are more or less interchangeable, as is the case in classical first-order logic. This is one of the big



philosophical differences between first-order logic and type-theoretic logic.

There is also a generalization of the sum/coproduct type which allows us to ”squish together” an
arbitrary family of types, rather than just two. This construction is called the dependent pair type.
To be specific, given a type A : U and a type family over A, i.e. a function B : A — U, the dependent

pair type is denoted
>_Bla)
a:A

and can also be defined inductively with a single constructor called pair, which has the following type

signature:
pair : 11 (B(a) — ;B(a))

That is, given an element a : A, and an element of the type B(a) corresponding to this element from
the type family B, we can construct an element of the dependent sum type ¥X,.4 B(a). Notice that,
to construct an element of the dependent sum type, we only need at least one of the types B(a) in the
type family B : A — U to be nonempty. Recall that in order to define an element of the dependent
function type I1,.4B(a), each type in the type family must be nonempty, because each element a : A
must be mapped into an element of its corresponding type in the type family B(a). Hence, whereas the
dependent function type former Il was analogous to the universal quantifier V from first-order logic,
the dependent pair type former ¥ is analogous to the existential quantifier 3 from first-order logic. If
we interpret the type family B : A — U as a predicate, assigning to each a : A a proposition B(a)
which can either be true (nonempty) or false (empty), an element of II,.4B(a) states ”B(a) is true
foralla: A”, but ¥,.4B(a) states ”B(a) is true for some a : A”, or "there exists a : A such that B(a)”.

As usual, we also have a recursor for the dependent sum type X,.4B(a), which we can denote
TeCx(q:4) B(a)- Lhe recursor has the following type signature:

TeCx(a:A)B(a) : H ((HB(a) — C’) — (ZB(@)) — C)
cu N aA a:A

That is, if we provide a family of functions f, : B(a) — C from B(a) to C for each a : A, we can
assemble them together into a single function from the dependent pair type ¥,.4B(a) into C.

Once again, if we interpret the dependent pair type as an analogue of the existential quantifier
3 "there exists”, then we can prove analogues of true sentences in first-order logic such as ”if A is
nonempty and B(a) is true for all a in A, then there exists a in A such that B(a)”. In first-order logic,
this would look like

(Brze A)AN(VzxzeA— B(x)) — Bz z e AN B(x))

whereas in type-theoretic logic, this looks like
A (HB(a)) o (ZB(@))
a:A a:A

Say we want to write a proof of this proposition, or a function with the above type signature, which
we'll call univToExist. This function, when given an element a : A and a function f : I1,.4B(a) as
input, would have to supply an element of ¥,.4B(a) as output. To do this, we can just pair up the
element a with the element f(a) : B(a) obtained by evaluating f at a, so we may define our function
using a lambda expression as follows:

univToExist = (Aa. Af. pair(a, f(a)))
See the exercises for a couple more examples to try on your own.

You might have noticed that the dependent pair type generalizes the binary sum construction -
that is, A+ B can be defined as a special case of a dependent pair type. Recall that 2 is the binary



type, or the inductive type with two constructors true : 2 and false : 2 (sometimes they are given
other names). If we have two types A, B, we could collect them together into a type family over 2 by
defining a type family F' : 2 — U which maps true — A and false — B. Then we could define the
coproduct type A 4+ B to be the dependent sum X,.oF(z). To be more specific, 2 has a recursor recy
with type signature
recy : HC’—)C—)(Z—)C’)
c:u
which, given two values cg,c; : C, returns a function 2 — C' sending true — ¢y and false — c;.

Hence, if we let
F =recy(A, B)

then we could alternatively define A+ B as the dependent sum type >, F(z) so that the constructor
inl can be replaced by the function (Aa. pair(true,a)) and the constructor inr can be replaced by
the function (Ab. pair(false,b)).

You might also have wondered why the constructor for the dependent sum type is called pair,
when we already have another constructor for a different inductive type called pair, namely the
constructor for the product type A x B. This is because the product type is also a special case of the
dependent pair type: in particular, A x B can be thought of as a dependent sum of a constant type
family over A, i.e. the type family sending a — B for each a : A.

3 Teaser on equality types

Any theory of mathematics worth its salt should clearly have a way of expressing equations, or ex-
pressing that two expressions have the same value. In first-order logic, this is accomplished by the
equality sign =, which is defined in terms of certain properties such as reflexivity, symmetricity, and
transitivity. In type-theoretic logic as we have developed it so far, types and propositions have been
one and the same. To continue this pattern, if we want to make assertions involving equalities, these
should also be types. For instance, the assertion (zero 4+ one = one) should itself be a type, and it
should therefore have elements, be capable of acting as the domain and codomain of functions, and
so on. But what on earth should an element of such a type look like? As a bit of a spoiler, the rich
theory of equality types in type theory is where the name Homotopy Type Theory comes from. We
shall see later that topological analogies are very helpful in understanding how equality types behave.

Given a type A, we have a parametrized family of types A — A — U defining the equality types
of A. Given z,y : A, we write (x =4 y), or sometimes just (x = y) (when A is clear from context) to
denote the equality type of x and y. If x and y are indeed the same element of A, this type will be
nonempty, representing a true proposition. If z and y are distinct, the equality type (z =4 y) will be
an empty type. Actually, the family of equality types are inductively defined, with a single constructor
called refl. This constructor has the following type signature:

refl: H(a =4q)
a:A

Given an element of A, ref1(a) asserts that a is equal to a, hence the name ref1, short for "reflexivity”.
There is also what is called an induction principle for equality types, a generalization of recursion
principles that allows us to define dependently types functions out of equality types. We haven’t yet
discussed induction principles (actually, all of the inductive types have one, we just haven’t talked
about them yet), but we’ll talk about them first thing in the next session. Notice that we haven’t
assumed the symmetric and transitive properties of equality as part of the definition - these are actually
theorems that can be proven from the induction principle. More on this later!

4 Exercises and teasers

Now we can finish filling in the table of analogous concepts from first-order logic and type-theoretic
logic that was left incomplete in the last write-up. However, I've added a few more rows at the bottom



with a few concepts that we haven’t found analogues for yet. Can you think of any ways to complete
the table? What would the HoTT analogues of these concepts look like?

First-order logic Type-theoretic logic
Proposition Type
Proof of a proposition Element /inhabitant of a type
True proposition Inhabited type (e.g. 1)
False proposition Empty type (e.g. 0)
Implication A — B Function type A — B
Modus ponens Function evaluation
Negation —A or ”A implies false” Function type A — 0
Conjunction, A and B Product type, A x B
Disjunction, A or B Coproduct type, A+ B
Predicate P on set A Type family P: A - U
Universal quantifier V Product type former II
For all z € A, P(x) [[.4P(x)
Existential quantifier 3 Dependent pair type former X
There exists € A such that P(z) Ya.aP(a)
Equality x = y or "z equals y” Equality type x =4 y?
Reflexive property of = Constructor refl
Symmetric property of = 777
Transitive property of = 777
Axiom of choice 777
Induction on N 777

Here are some exercises to think about if you want to play with type theory before the next seminar.
Some of them are taken from the HoTT book, which you can find a full PDF of online.

1. Prove that if there exists a : A such that B(a), then it is not true that =B(a) for all a : A. In
other words, construct an element (proof) with type signature

(2; B(a)) = ﬁ(HA ﬂB(a)>

for a given type A and type family B : A — U.
2. The Law of Excluded Middle is the following type:

LEM = [ (A +-4)
AU

which states, in plain english, ”for every proposition A, either A is true or A is false” or perhaps
“for every type A, either A is empty or A is nonempty”. It turns out that it is impossible to
construct an element of LEM, nor is it possible to construct an element of —LEM. (Take my
word for it, or try to construct an element yourself until you give up.) However, the following
modification of LEM is provable:

[[-—a+-4)

AU


https://hott.github.io/book/hott-online-1351-g99f4de9.pdf

Construct an element of this type, i.e. a proof that for any proposition A, it is not false that
either A is true or A is false.

. Prove the tautology ”if not (A or B), then (not A) and (not B)”. That is, supply an element of
the type
-(A+ B) — (A x -B)

for any given types A, B.

. Given functions add : N -+ N — N and mult : N - N — N, define a function isPrime : N — U/
which maps each natural number n : N to either the empty type O if n is not prime, or the unit
type 1 if n is prime. You can define a few intermediate functions if necessary.
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